DOCUMENTATION

Version 0.1

By Pym (thepym@free.fr)

SAD 8061 — 8065 / SAD806X

Version 1.0.0.3

SAD 8061 — 8065 / SAD806x

Table of contents

(D I=Eol g1 o) A [0 PO OTTPTTP PP PRPPPPPPTN 3
1o 13 11 1A Te] o O T RO U PP PO USTOPPT 4
FIPST ST oo e 5
21 aF=Y RV [¥= Yo [=To USSR 6
21 e Y VAo L1SF- 13T 1101 o] L= o PP PPPRR 13
Disassembled Binary OULPULLEA:........ccccuiiii ittt e et e e e tae e e e bte e e e ebtae e e enaeeeeeanes 17
SAD BO6X efiNITION: ..ceeiiiieee ettt sttt ettt s b e e b e nes 19
o] o 1=T A =T TP PP PUPPPPROPRY 20
RESEIVEA: ...ttt ettt ettt ettt e st e e st e s bee e s bt e e shb e e sabe e s beeesabee e bbeesabeesbeeesabaeeans 22
Yot | T SO OO TSP POUURR PRSP 24
FUNCEIONS: et e s s e s s be e s s e e e s s eree e s sneees 37
L] o] LT T O O OO POV PPPTOTPROTOPPTO 45
SEPUCTUIES: et a e s s et e s s ba e e e ssra e e e snraeee e 55
ROUTINES e et e s e e s s e s s e e s s e e s s 66
(0] 1] - 1 1 o] o[- PP UPRPPPPPTN 80
=Y <1 (=] PP PP P UPPPPPRRIRY 84
Other @dArESSES: ...ttt ettt sttt ettt e bt e s bt e sateeab e et e e abeesheesaeesabesabeebeenns 90
ROUTINES SIZNatUIES .. e e e e e e e 94
EleMENTS SIBNATUIES: ..eii ittt e e et e e e sbt e e e s s beeeeesbeeeesssraeessnsraeeesnnes 109
DI 1T a] o AV K= A O LU o1 U 122
SAD BOBX MIENUE ..eeiiiniiieiiiitte ettt ettt ettt e e st e e s st e e s s e e s s esb e e e s s aab e e e s sanbe e e s sanbe e e s sanreeessanreeessnnreeas 133
FIlE MIBNUE ettt sttt e r e e r e s bt e sae e san e s r e e n e nns 133
(D1 T =T 0] o]V 1 1=] o 1O U UPRSN 134
L@ T} o101l 0 1 1= o [TNt 135
TOOIS SEAICN MENUS: ..ttt sttt ettt e b e sb e sae e sanesneereenes 136
TOOIS IMPOIT/EXPOI MENUS: ..eveereeieeeteeereeiteeeteesteeetteereeereereesseesteeetseesseeseesseesssesasesaseenseenseenns 138
TOOIS COMPAIISONS MENUS: ...uuviiiieeeeeeiiiiiiteeeeeeeeeeitrtereeeeesessasstseeeeaeseesasssseesesessesaassssnseeesessnsnssnn 141

B e Yo K 5 120 q o Tk oYl 0 d T=T 0 U SN 153

SAD 8061 — 8065 / SAD806x

HeElp REPOSITOIY MENUS: ...oviiiiiiiieeiciieeeeetiee e et e e eett e e e eetre e e estteeeesbeeeeeebeaeesasteeessseeeessnssenaesnnes 155
NYAYD 05 @ wle] g TaaF: TaTe I [T o[-l o] o] 4 o] F5 PRSP 160
S ettt ettt ettt et ettt et e e e e s e bt e e e e e e e e e abetae e e e e e e e b ebaeeeee e e e e bt taeeeeeeeannrtaaeeeeeeeaaanrraaaeeas 162

Disassembly/Output €rrors ManagemMENT:.......ccuecereeereerreeeeeeteeeeeeireerreesteesteesseesveeseenseenseesseesnes 162

Banks Order and SAD BOBX:........cccueerueerieerieniierie st et et e sbeesbeeseeesaeesteesbeesbeesbeesaeesanesne b e e neennes 167

(€] (o Y- o PP 169

SAD 8061 — 8065 / SAD806x

Description:

SAD 8061 — 8065 or SAD806X, is a semi-automatic disassembler tool for Intel 8061 or 8065
microcontrollers, specifically dedicated to Ford engine control units EEC-IV and EEC-V.

Its initial purpose was as following:

- To disassemble 8061/8065 roms
- To do it automatically or semi-automatically
- To generate disassembly outputs in multiple formats

Current version gives comparison functions in addition.

SAD806x is still under development, is not a commercial product and so no guarantee can be
provided on it.

SAD806x never updates the binary file which is used, other tools are dedicated for this job, but do
not melt files extensions, to be sure.

This document contains some kind of glossary, which could help on some meanings, but a certain
knowledge about disassembling and ECU tuning will clearly help. A good starting point, would be to
read “TECHNICAL NOTES ON THE EEC-IV MCU” (Eectch98.pdf).

Thanks to Andy (tvrfan) for SAD, software used as template for initial output, to Mark
Mansur for TunerPro, which permits to continue working generated data.

SAD 8061 — 8065 / SAD806x

Installation:

SAD806x can be installed everywhere on a Microsoft Windows system, using Framework 2.0
at least. Following files should be present in its folder to permit it to work properly:

- SAD806x.exe : the executable file.

- NCalcdll : Mathematical Expressions Evaluator for NET
(https://github.com/sheetsync/NCalc)

- System.Windows.Forms.DataVisualization.dll : Microsoft Charting for .NET

- conversion.xml (optional) : Conversion repository

- units.xml (optional) : Units repository

- registers.xml (optional) : Registers repository

- structures.xml (optional) : Structures repository

- tables.xml (optional) : Tables repository

- functions.xml (optional) : Functions repository

- scalars.xml (optional) : Scalars repository

If you want to update/create repository, just make sure you have enough right on computer and
folder.

https://github.com/sheetsync/NCalc

First start:

SAD 8061 — 8065 / SAD806x

You have two ways to start SAD806x, by command line, which will provide additional options
(it will be seen later on) or directly and directly by double clicking on its executable.

4 SAD 8061-8065

File Disassembly Output

Tools

?

File | Disassembly Output

? |

Select Binary ...
Select SAD 806x ..

Exit

Menus are activated based on status of worked binary.

Search Objects

Search Signature
Import/Export
Comparisons

Hex Editor

Ctrl+F

Repository

About...

Registers
Tables
Functions
Scalars
Structures
Units

Conversion

It is possible to work on repository directly without loading a binary, but that is the only available

ability at this level.

So the next step is to select a binary file, through menu ‘File/Select Binary ... or to drop it on

application.

SAD 8061 — 8065 / SAD806x

Binary loaded:

When loading a new binary, SAD806x directly tries to analyse it.
By default, SAD806x tries to find S6x definition, in the same folder than the binary, with the same
name, but off course with .s6x extensions. If it finds it, it is loaded at the same time.

First analyse will show its result in panels on the right.

SAD 8061 — 8065 / SAD806x

When a bad binary is loaded, result is as following :

4 SAD 8061-8065 (BADBIN.BIN) - O X

File Disassembly Output Tools ?

Properties
?:;I‘::Z; Y BADBIN.BIN

- Functions (0) Unrecognized Binary - 2095813 Bytes
Scalars (0) Tt

Structures (0)

Routines (0)
Operations (0)
- Registers (0)

Other Addresses (0)
Routines Signatures (0)
[#- Blements Signatures (4)

Banks :

Do not forget, that SAD806x only works with Ford EEC-IV and EEC-V binary, from 32ko to 256ko.

At this level, signle option is to look at hexadecimal code on it, menu ‘Tools/Hex Editor’, to
understand the issue and correct it with an external tool or to go to another binary.

Tools | ?

Search Objects Ctrl+F

Search Signature
Import/Export »

Comparisons >

Hex Editor ||

It will be detailed later on.

A valid binary file will be loaded like this:

SAD 8061 — 8065 / SAD806x

File Disassembly

&8 SAD 8061-8065 (KBAN7H4.BIN / KBAN7H4.56x / KBAN7(H4))

Output Tools ?

®

2

Properties

Reserved (185)

Tables (0)

- Functions (0}

Scalars (8)

Structures (0)

Routines (0)
Operations (0)
- Registers (0)

Other Addresses (0)
Routines Signatures (0)
#|- Elements Signatures (4)

1;

KBANTH4BIN
8065 Binary - 221184 Bytes
KBANT(H4) Strategy

KBANTH4 sbix

Banks :
0 00000 => DAEEE
0e000 => 1SE£E 1‘

28000 => 3SEEE
1a000 => 27EEE

w @

RBases :
£0 (20€0), £2 (24b4)
£4 (272a), f€ (3cca)
£8 (48d8), fa (5bBE)
fc (€30e), fe (BS€a)

CheckSum is walid

CheckSum cOde
SMF Base Address 000
CC Exe Time 005d
Levels Number -]
Calibs Number 1
|
A
Elements definition, directly filled reserved addresses,elementy/detected at load jor defined i

associated definition and predefined signatures.

‘Binary and definition information panel’.
‘Banks information panel’.

‘RBases information panel’.

‘Other information panel’.

‘Work progress bar’.

Same thing with an available definition in the folder.

SAD 8061 — 8065 / SAD806x

{8 SAD 8061-8065 (KBAN7H4.BIN / KBAN7(H4))

File

Disassembly Output

[y =]

&

&

al

Properties
Reserved (185)
Tables (103)
Functions (198)
Scalars (225)
Structures (0)
Routines (17)
Operations (0)
Registers (127)

- Other Addresses (0)

Routines Signatures (0)
Blements Signatures (4)

Tools

?

- O X
KBANTHABIN
8065 Binary - 221184 Bytes
KBANT(H4) Strategy
KBANTHA.s6x

Banks :
o 00000 => Odfff
1 0e000 => 19££f
8 28000 => JSEfE
L] 1a000 => 27£££

RBases :
£0 (20€0), £2 (24b4)
£4 (272a), £€ (2cca)
£8 (46d8), fa (5bB8€)
£c (€30e), fe (B5€a)

CheckSum is valid

CheckSum cOde
SMP Base Address e000
CC Exe Time 005d
Levels Number 8
Calibs Number 1

SAD 8061 — 8065 / SAD806x

By clicking on ‘Binary and definition information panel’, additional information can be displayed:

SAD 8061-8065 X ‘

o KBAN7H4.BIN

EEC V - 8065 Binary - 221184 Bytes

Strategy : KBAN7(H4)

Part Number : XSTVA)

PATS Code : fiffffffttHtf ittt it iffftfrrieriee
VID Block is Disabled.

Copyright Visteon Corp. 2002

When Checksum is given as invalid in ‘Other information panel’, by clicking on this panel, you can
have the right value to use:

SAD 8061-8065 X ‘

o Correct CheckSum should be 9dd9, d99d in binary.

Sometimes Checksum cannot be calculated at all.

At this level some options are now available in menu.

File | Disassembly Output
Select Binary ...
| Select SAD 806x ...
KBANTH4.s6x
Save SAD 806x
Exit
‘File/Select SAD 806x..." : to select another S6x file. Current name is given just below.
From my point of view, the best thing to do is to use the same name than the
binary file from the beginning.
‘File/Save SAD 806x’ : available at this level, to create S6x file here.

Disassembly | Output
ﬂl Disassemble ||

‘Disassembly/Disassemble’ : nothing to say here. It will be detailed later on.

Tools | ?

| Search Objects Ctrl+F

Search Signature
Import/Export

Comparisons

Hex Editor

‘Tools/Search Objects’
‘Tools/Search Signature’
‘Tools/Hex Editor’

Tools ‘ 7

SAD 8061 — 8065 / SAD806x

: nothing to say here, tools will be described later on.

Search Objects Ctrl+F

Search Signature

| Import/Export

Comparisons

Hex Editor

SADB06x files

SAD files

TunerPro files

L4
4

Tools | 7

Search Objects Ctrl+F

Search Signature

‘Tools/Import/Export/SAD806x files/Import Signatures’

4 “ Import Signatures |

Hex Editor

‘Tools/Import/Export/SAD files/Import SAD Dir file’

‘Tools/Import/Export/SAD files/Import SAD Cmt file’

‘Tools/Import/Export/SAD files/Export SAD Dir File Part’

| Import/Export » | saDsOBxfiles
Comparisons ’ SAD files » | Import SAD Dir file
TunerPro files » Import SAD Cmt file

Export SAD Dir File Part

Tools | 7

Search Objects Ctrl+F

Search Signature

| Import/Export »| sADsOGxfiles »
SAD files »

Comparisons »

SAD 8061 — 8065 / SAD806x

Hex Editor TunerProfiles » || Import/Sync Xdf file

Export/Sync Xdf file

Reset Uniqueld for new export

‘Tools/Import/Export/TunerPro files/Import/Sync Xdf file’
‘Tools/Import/Export/TunerPro files/Export/Sync Xdf file’

‘Tools/Import/Export/TunerPro files/Reset Uniqueld for new export’

Tools | ?

Search Objects Ctrl+F

Search Signature

Import/Export »
Comparisons 4 | Binaries Comparison (Same definition)
Hex Editor Binaries Comparison (Different definition)

| SAD 806x Comparison (Same Binary)

Routines Comparison

Calibration Chart View

‘Tools/Comparisons/SAD 806x Comparison (Same Binary)’

So the classical next step will be to disassemble the binary, with a definition or without, through

menu ‘Disassembly/Disassemble’.

SAD 8061 — 8065 / SAD806x

Binary disassembled:

When disassembling a binary, it will take some resources on computer and based on its speed, it
could take some seconds, “Work progress bar’ will help and at the end result is always the same, with
a definition provided or not, this information will appear in ‘Other information panel’.

\
48 SAD 8061-8065 (KBAN7H4.BIN / KBAN7 (H4)) o u x

File Disassembly Output Tools 7

- Properties
- Reserved (185) KBANTHABIN
- Tables (128) 8065 Binary - 221184 Bytes
- Functions (500) KBANT(H4) Swrategy
- Scalars (2352)
- Structures (191)
]- Routines (1413)
Operations (0)
- Registers (337) Banks :
Other Addresses (0) 9 g:ggg =j g:g:
- Routines Signatures (0)

28000 => 3ISEEE
- Blements Signatures (4) 12000 => 27£££

KBANTH4 sbx

- 3-E- -

@
0 @ e

RBases :
£0 (20€0), £f2 (24b4)
£4 (273a), f€ (3cca)
£8 (48d8), fa (5bBE)
fc (€30e), fe (B%€a)

Disassembly done
S seconds.

When result is ‘Disassembly done’, SAD806x has not detected any error in operations or calibration
elements, but it could have some, which appear later on output.

When definition contains errors or with some binaries, result could be ‘Disassembly done with
errors’.

Disassembly done with errors.
5 seconds.

It does not signify that disassembly has failed, but that some operations or calibration elements are
wrong, in fact with addresses shared with others. By clicking on ‘Other information panel’, details will
be provided. Identification and/or correction of these errors will be detailed later on.

SAD 8061-8065 X ‘

Q 3 Error(s)

Calibration Elements Conflict: 1 8397 vs 18398
Calibration Elements Conflict: 1 83e3 vs 1 83e4
Calibration Elements Conflict: 1 83e9vs 1 83ea

SAD 8061 — 8065 / SAD806x

At this level, new options are available.

Output | Tools 7
| TextOutput
KBANT7H4 txt
Select File ...

‘Output/Text Output’ : to generate the disassembled text output. It will be detailed later
on.

‘Output/Select File ..." : you can notice that the output file name is shown just before. You
can just select another output file. But if shown file already exits, by double
clicking on the file name, you can open in in the default editor.

Tools | ?
Search Objects Ctrl+F
Search Signature
Import/Export »
Comparisons 4 Binaries Comparison (Same definition)
Hex Editor Binaries Comparison (Different definition)
SAD 806x Comparison (Same Binary)
Routines Comparison » Export Skeleton
Calibration Chart View Compare Skeletons
Compare Binaries
About...

‘Tools/Comparisons/Binaries Comparison (Same definition)’ : nothing to say here,
comparison tools will be described later on.

‘Tools/Comparisons/Binaries Comparison (Different definition)’

‘Tools/Comparisons/Calibration Chart View’

‘Tools/Comparisons/Routines Comparison/Export Skeleton’ : nothing to say here,
Routines comparison tools will be described later on.

‘Tools/Comparisons/Routines Comparison/Compare Skeletons’

‘Tools/Comparisons/Routines Comparison/Compare Binaries’

‘Tools/Comparisons/Routines Comparison/About...” : This one is information

about this menu.

When binary is disassembled, SAD806x memory contains auto-detected and already defined
operations, calibration elements and other elements, which have been separated. In addition routine
grouping has been created and is available, same thing for useful registers. Everything is available in
‘Elements definition’ tree, except non provided operations, which have no interest here.

SAD 8061 — 8065 / SAD806x

Everything related with ‘Elements definition’ tree with be seen later on, type by type.

SAD 8061 — 8065 / SAD806x

For the next step that can be done with this memory, without talking about tools, it is the text

output. So just use menu ‘Output/Text Output’.

SAD 8061 — 8065 / SAD806x

Disassembled Binary Outputted:

To output the disassembled binary, it will take some resources on computer and based on its speed,
it could take some seconds, because generated file can have many lines, “Work progress bar’ will help
to know the status. This information will appear in ‘Other information panel’.

\

8 SAD 8061-8065 (KBAN7H4.BIN / KBAN7(H4)) — O e

File Disassembly OQutput Tools 7

Properties
- Reserved (185) KBANTHABIN
Tables (129) 8065 Binary - 221184 Bytes
Functions (500} KBANT(H) Strategy
- Scalars (2352)
Structures (191)
- Routines (1413)
Operations (0)
|- Registers (337) Banks :
. Other Addresses (0) 0 00000 => OdEFE
) 02000 => 19£££
Routines Signatures (0) 28000 => 2S££E
|- Elements Signatures (4)

KBANTHA séx

&-F-5-F-E-F

[+

w o e

1a000 => 27£££

[+

RBases :
£0 (20€0), £2 (24b4)
£4 (272a), £€ (2cca)
£8 (48d8), fa (5bB€)
£c (€30e), fe (B5€a)

Output done.

Like for disassembly, when result is ‘Output done’, SAD806x has not detected any error in operations
or calibration elements outputting, but it still could have some.

When definition contains errors or with some binaries, result could be ‘Disassembly done with
errors’.

Output done with emrors.

Like for disassembly, it does not signify that output has failed, but that some operations or
calibration elements are wrong, in fact with addresses shared with others. By clicking on ‘Other
information panel’, details will be provided. Identification and/or correction of these errors will be
detailed later on.

SAD 8061-8065 X
8 2 Errors)

164b6
18002

At this level, options are the same than at the disassembled level.

The disassembly text file will be explained later on.

SAD 8061 — 8065 / SAD806x

SAD 8061 — 8065 / SAD806x

SAD 806x definition:

Working without a proper definition, is a required starting point in many cases.

SAD 806x will do its first job, to disassembly the binary and as a result, most of the calibration
elements will be identified and the code will be translated, grouped and separated from the
elements. Doing a text output will show this, but it will be seen later on.

SAD 806x will also do its second job, to show all these elements and to permit to update them, to
create a proper definition, which could be saved, exported and so on.

Everything is accessible through ‘Elements Definition’.
P

8 SAD 8061-8065 (KBAN7H4.BIN / KBAN7(H4)) - m X
File Disassembly Output Tools 7
Properties
it)- Reserved (185) KBANTHABIN
- Tables (103) 8065 Binary - 221184 Bytes
- Functions (198) KBANT(H4) Strategy
#)- Scalars (225) A KBANTHA s6ix
Structures (0)
- Routines (17)
-Operations (0)
- Registers (127) Banks :
Other Addresses (0) 0 00000 = pdsss

0e000 => 1S££E
Routines Signatures (0) :

28000 => 3SEEE
|- Bements Signatures (4)

1a000 => 27£££

[+
@ e

RBases :
£0 (20€0), £2 (24b4)
£4 (272a), £€ (2cca)
£8 (48d8), fa (5bBE)
£c (€30e), fe (B5€a)

CheckSum is walid

CheckSum cOde
SMP Base Address e000
CC Exe Time 005d
Levels Number 8
Calibs Number 1

Let’s take this from the beginning.

SAD 8061 — 8065 / SAD806x

Properties:

48 SAD 8061-8065 (KBAN7H4.BIN / KBAN7 (H4)) - u x

File Disassembly Output Tools 7

== Properies 1]

- Reserved (185) KBANTHA BIN

]- Tables (121) 8065 Binary - 221184 Bytes
- Functions (497) KBANT(H4) Swrategy
Scalars (2342)

- Structures (207)
- Routines (1412)
Operations (0)

|- Registers (270) Banks :
Other Addresses (0) o g:ggg : g:g:
- Routines Signatures (0)

28000 => 3ISEEE
|- Blements Signatures (4) 12000 => 27£££

KBANTH4 sbx

&-F-E-E-E-E

=

[+
0o e

Properties
RBEases :
Label Xdf Base Offset £0 (20€0), £2 (24b4)
£4 (373a), £€ (3cca)
|KBAN7 Subtract [] £8 (4848), £a (SbEE)

fc (€20e), fe (BS€a)
[[] No automatic numbering

[[] Registers list output

Comments Disassembly done
S seconds.

Validate Cancel

‘Properties’ give a generic setup for the SAD 806x definition, which will be mainly used for output
and Xdf file export. Following items are available:

- ‘Label’ : The label of your definition, initialized with detected
strategy name, if found.

- ‘Noautomatic numbering’ : It indicates, if auto-detected elements will use generated
count or directly their address, in their generated labels, short labels. Checked means, it
will use addresses.

- ‘Registers list output’ : It indicates, if the list of user defined registers, will be
outputted at the beginning of text output or not.

- ‘Comments’ : Always useful.

- ‘Xdf Base Offset’ : ‘Subtract’ checkbox and address text box, permits to
provide to TunerPro, the right position for Calibration Bank, when exporting to Xdf file.
When using auto detected (default) address, only elements in Bank 1 and after can be
addressed, but addresses become really clear in TunerPro. For other elements or
patches, you will have to do some tries.

‘Label’, ‘Comments’ and ‘XDF Base Offset’, will be reused for Xdf Export.

SAD 8061 — 8065 / SAD806x

You will see everywhere, the following buttons:
Validate Cancel

They will be enabled based on current status.

‘Validate’ : It will save into memory, updates done at this level, here on properties. You
will see a color change when done, but it will be required to save Sad 806x file (.s6x file), to save
things definitively. Do not forget this button, before opening another thing.

‘Cancel’ : It will just cancel updates done at this level, since last load or Validate, here
on properties.

Reserved:

SAD 8061 — 8065 / SAD806x

File Disassembly Output Tools

48 SAD 8061-8065 (KBAN7H4.BIN / KBAN7 (H4))

?

[=- Reserved (185)

Bank Rom Size

Checksum

Smp Base Address

Cc Exe Time

- Intermupt High Speed Output 0
Interrupt High Speed Output 1
Interrupt High Speed Output 2

- Intermupt High Speed Output 3
Interrupt High Speed Output 4

- Intermupt High Speed Output 5
Interrupt High Speed Output 6
Interrupt High Speed Output 7

- Intermupt High Speed Output 8
Interrupt High Speed Output 9

- Intermupt High Speed Output 10
Interrupt High Speed Output 11
Interrupt High Speed Output 12
- Intermupt High Speed Output 13
Interrupt High Speed Output 14
Interrupt High Speed Output 15
Interrupt High Speed Input FIFO
Interrupt Bxtemal

- Intemrupt High Speed Input 0
Interrupt Hight Speed Input Data
Interrupt High Speed Input 1
Interrupt Analogic/Digital Imm Ready
Interrupt Analogic/Digital Timed Ready
- Intemrupt Analogic Timer OVF

KBANTH4BIN
8065 Binary - 221184 Bytes
KBANT(H) Strategy

KBANTH4 sbx

Banks :

00000 => Odfff
0e000 => 1S££ff
28000 => 3ISELE
1a000 => 27££f

woeo

RBases :
£0 (20€0), £f2 (24b4)
£4 (273a), f€ (3cca)
£8 (48d8), fa (5bBE)
£fc (€30e), fe (B%€a)

Disassembly done.
4 seconds.

‘Reserved’ part includes fixed addresses elements or other items that should not be updated at their

definition level.

So nothing can be modified on them, available information is displayed when mouse is over the item.

On some of them, through a right click you can have access to the context menu. But here, the only
option is ‘Copy (xdf)’, which is is useful for them, not for the others. Options will be detailled later on.

Interrupt Software 9
Strategy

Part Number

PATS Code
Copyright

VIN Code

VID Block Enabled

A

Tyre Revolutions per hlila

Rear End Gear Ratio
Intermupt High Speed
Intermupt High Speed
Intermupt High Speed
Interrupt High Speed
Interrupt High Speed

Display

New

Rename

Copy

Interrupt High Speed |

Copy (xdf)

Interrupt High Speed
Intermupt High Speed
Interrupt High Speed
Interrupt High Speed
Interrupt High Speed
Interrupt High Speed
Interrupt High Speed
Interrupt High Speed
Interupt High Speed
Interupt High Speed
Interupt High Speed

Paste

Paste and Overwrite

Create Duplicate

Set as Main
Search Operations

Skip

Reset/Remove

Intemupt Extemal
Intermupt High Speed Input 0

Interrupt Hight Speed Input Data v

SAD 8061 — 8065 / SAD806x

Everything related with reserved elements will be present in text output, but will not be
automatically exported to Xdf or other formats.

SAD 8061 — 8065 / SAD806x

Scalars:

Scalars are the first calibration elements described and the simplest ones, therefore, all available
actions on the element will be detailed at this place, but their description can be reused for other
calibration elements.

SAD 8061 —

8065 / SAD806x

For everything related with assembly, everything related with an address, you have these elements:

‘Descriptor’

‘Bank’

‘Address’

: The bank number for the element.

: The address of the element in the related™Mank. \

: Descriptor of the element, which is read only here, this one appears in the

{E# SAD 8061-8065 (KBAN7H4.BIN / KBAN?(HN
File Disassembly Output Tools ?I_ -

[=)- Scalars (2342) ~
Rbase Rf0 end next address [
Rf0+3

-Rf0+4
Rf0+5
Rf0+6
Rf0+7
Rf0+8

-Rf0+a

\s_ -
______________________________ oo -
1
Ri0+2 [1 [28 |
- e RaanTHABIN
8065 Binary - 221184 Bytes
» |2 KBANT(H4) Strategy
KBANTH4.s6x
Banks :
0 00000 => OAEFEf
1 0e000 => 1SE£f
8 28000 => 3SEEE
§ 1a000 => 27E£E
Properties
. REaszes :
Label Units £0 (20€0), £2 (24b4)
£4 (272a), £6 (3cca)
IWD‘Z] (1 Skip ‘ ‘ £8 (40d8), £a (SbEE)
Shott Label Scale £c (€30e), fe (85€a)
[Signed Sc0002 M Byte Bit Flags
Bit Flags
Di bly d
Comments Output Comments [] SES:?QQN ons
2062
|
Validate Cancel

Color changes based on cases. Purple for updated elements, red for new one to be reviewed.

SAD 8061 — 8065 / SAD806x

For everything related with calibration elements, you will have an ‘Element Data’ part:

/
8 SAD 8061-8065 (KBAN7H4.BIN / KBAN7(H4)) — O X
File Disassembly Output Tools ?
(- Scalars (2342) Al mO22__ AR L L2082 |
Rbase Rf0 end next address ~
Dre / i*;.ﬁ";a:;wmm Bytes
-Rf0+3 » (2 / HBANT(H4) Strategy
Ri0+4 / I!EAN'IHASG:
Ri0+5 1
Rf0+6 L —
Rf0+7 1
-Rf0+8 Banks :
Rf0+a | 00000 => Odfff
Ao oD
Rf0+e I s 1a000 => 2788
Rf0+ea !
-Rf0+eb :7
RfQ+ec N L i
g&;;e Label Units Zo (2060), £2 (2em4)
A [Ri0-2 | Ose | | £ (wan), 2 (3006)
- Rf0+292 Short Label Scale fc (€30e), fe (89€a)
Rf0+294 [Signed 5c0002 M Byte Bit Flags
Rf0+258
-Rf0+2%a Bt Flags
Rf0+25¢ 5
-Rf0+2% Comments Output Comments [] snmm:m:'f dane.
Rf0+3%0 2062
Rf0+352
- Rf0+3%4 —
R0+396 |
Ri0+398 . Validate Cancel
‘Element Data’ will directly display scaled value(s) for the element.
By right clicking on this part you will have access to some options:
Byte
> |2 .
Decimal
Ignore conversion
Reverse Order
Additional Output Conversion » | | Cubic Inch to Cubic Centimeter
Cubic Inch to Liter
Pres. Bar to| X"16.3871
Pres. Psi to Bar
Rpm. Standard
Speed. Km/h to Mph
Speed. Mph to Km/h
Temp. *Cto °F
Temp. “F to °C
Volts, 12800
Without
‘Decimal’ : Checked, data is displayed as decimal values, unchecked as hexadecimal

values (not scaled anymore, when hexadecimal).

‘Ilgnore conversion’ : Does not scale values anymore when checked.

SAD 8061 — 8065 / SAD806x

‘Reverse Order’ : It has no interest for Scalars, but for Functions or Tables, it starts from the
last row, when checked, which makes data esaier to read.

‘Additional Output Conversion’ : It permits to add, only in this place a second scale level, after the
first one (if one is defined), to display data converted, to validate a new scaling formula or to identify
classical types of values. Options present in the list are coming from the conversion repository, when
mouse is over you can see the used formula. It does not apply with ‘Ignore conversion’ or outside
‘Decimal’ range.

A specificity exists for Functions, another option ‘Additional Input Conversion’ will be present, it is
the same thing, but a function has an Input value and an Ouput one, therefore, it is necessary to have
a specific conversion for each of them.

SAD 8061 — 8065 / SAD806x

A Scalar is a byte (8 bits) or a word (16 bits) value. Because we are disassembling based on Intel
instructions, word values are store low byte first (LSB in TunerPro) in assembly. This is the case for
everything, including, functions, tables and structures.

A Scalar can be used as signed, based on related instructions.

You have 2 main types of scalars, the ones which are related with RBases, they will appear by default
with their related RBase and the value added and the others, outside calibration part which will
appear differently.

Let’s describe ‘Element Properties’ part:
N\

SAD 8061-8065 (KBAN7H4.BIN / KBAN7(H4, B - e

File Disassembly Output Tools 7

=)- Scalars (2342) A X0-2 [1 T 2082 |

Rbase Rf0 end next address ~

KBANTHABIN

Bre N\ rtime D
-Rf0+3 > (2 KBANT(H4) Strategy
Rf0+4
-Rf0+5
Rf0+6
Rf0+7
- Rf0+8 Banks :
Rf0+a o 00000 => Odfff
0e000 => 19£ff

28000 => 3ISELE
1a000 => 27£££

KBANTH4 séx

0@ e

RiQ+ec Properties
Ri0+28e Label Units
Rf0+28f Ri0s2 ‘] Skie ‘

- Rf0+252 Short Label Scale
RF0+294 [Signed 5c0002 Byte Bit Flags

RBases :
£0 (20€0), £f2 (24b4)
£4 (272a), f€ (3cca)
£8 (48d8), fa (SbBE)
fc (€30e), fe (BS5€a)

>

Disassembly done
S seconds.

- Rf0+2% Comments Output Comments []
Rf0+390 2062

RO% 0 [TTm === - - - - - s mmmm— e ———- - - - E——
-RfD+398 Validate Cancel

v

‘Element Properties’ part contains generic properties, which you will globally find on all elements,
specific properties, only related with this type of element and specificities, which are more complex
properties dedicated to this specific type of element.

For something like all text fields, by using shortcut ‘Ctrl-Shift-U’ shortcut on selected text, text will be
upper cased, with ‘Ctrl-U’ it will be lower cased.

Generic properties are like following:

‘Label’ : Auto generated by default, based on auto numbering. It will be visible at the
element address in the output.

It will be exported as main description, and inside comment in TunerPro.

By using shortcut ‘Ctrl-R’ shortcut in this place, the related repository will be searched for a matching
based on ‘Short Label’. In our case ‘Scalars Repository’.

‘Short Label’ : Auto generated by default, based on auto numbering. It will be visible in
code when element is used, and for sure at the element address too.

It will be exported with ‘Label’ inside comment in TunerPro, because it has no equivalent in
TunerPro.

By using shortcut ‘Ctrl-R’ shortcut in this place, the related repository will be searched for a matching
based on ‘Short Label’. In our case ‘Scalars Repository’.

SAD 8061 — 8065 / SAD806x

‘Skip’ : When skipped, user defined definition for element is ignored at
disassembly. Auto detection comes back to override the defined element.

‘Comments’ : Auto generated by default, with address in this case. It will be visible at the
element address in the output only if ‘Output Comments’ is checked.

It will be exported preceded with ‘Label’ and ‘Short Label’ in TunerPro, to keep trace of everything.
By using shortcut ‘Ctrl-R’ shortcut in this place, the related repository will be searched for a matching
based on ‘Short Label’. In our case ‘Scalars Repository’.

Scalars specific properties are like following:

‘Byte’ : Checked, scalar is declared as byte (8 bits), otherwise it is declared as word
(16 bits). Detection is based on related instructions.

‘Signed’ : Checked, scalar is declared as signed, otherwise it is declared as unsigned.
Detection is based on related instructions.

‘Scale’ : Formula to obtain the right scaled value. Scaled value will appear in the
output.

By using shortcut ‘Ctrl-R’ shortcut in this place, and on all related ‘Scale’ fields, the ‘Conversion
Repository’ will be searched entirely.

‘Units’ : This is the data unit for the related element, which is only used for
information and for TunerPro.

By using shortcut ‘Ctrl-R’ shortcut in this place, and on all related ‘Units’ fields, the ‘Units Repository’
will be searched entirely.

SAD 8061 — 8065 / SAD806x

How works a repository search?

With a text search:

. e

Related Repository » Cubic Inch to Cubic Centimeter
Cubic Inch to Liter

Pres. Bar to Psi

Pres. Psi to Bar

Rpm. Standard

f Speed. Km/h to Mph
Speed. Mph to Km/h

Temp. °Cto °F

Temp. “Fto °C

Volts. 12800

Without ”

Which provides a search result, which will be used to fill in current field or element.

|speed| ‘

Related Repository » || Speed.Km/htoMph |
Speed. Mph to Km/h [

-

SAD 8061 — 8065 / SAD806x

Scalar specificities:
Scalar can be detected or declared as a set of bit flags.
Bit Flags

A byte scalar set as bit flags can also contains 8 values of 0 (not set) or 1 (set) flags.
It is not possible to directly check the Bit Flags box, you have to go through the Bit Flags forms, by
clicking on the button.

{4 Bit Flags — O X
124ch
(= Bit Flags Bit Flag
B0
- B1 Label Short Label
B2 BO I |BD |
. B3 -
B4 osition
B5 B0 v [skip
gg QOutput Set Value Output Not Set Value
o]
Comments
Add / Update

A scalar is autodetected as\a bit flags, when it is used in a bit condition (and not only for its sign), only
related bit position is set as bit flag. You can do it manually through the related form and by right
clicking on ‘Bit Flags header’.

New Element
Create All

Remove All

‘New Element’ : It creates one bit flag in the list, if a position is available (8 positions for
bytes, 16 for words).

‘Create All’ : It creates all remaining bit flags.

‘Remove All’ : It deletes all declared bit flags.

SAD 8061 — 8065 / SAD806x

The ‘Bit Flag’ properties part, permits to detail each flag.

Bit Flag
Label Short Label
Position
BO v [skip
Output Set Value Qutput Not Set Value
] o]
Comments
Add / Update
‘Label’ : It is working like for other elements. Result will be seen for text output.
‘Short Label’ : No additional meaning. Result will be seen for text output.
‘Skip’ : No additional meaning.
‘Comments’ : Visible only in this place or in export, not in the output, no way to output it
properly.
‘Position’ : This is the bit position inside the scalar, 0 to 7 for bytes, 0 to 15 for words.

Bytes and words, bit order has to be known.

‘Output Set Value’ : 1 by default, but you can invert it if necessary, based on the meaning of
your label.

‘Output Not Set Value’ : 0 by default, but you can invert it if necessary, based on the meaning of
your label.

‘Add / Update’ button : Permit to validate creation when it is a newly added bit flag or an update,
when it was already created. Do not forget it for each bit flag.

When everything is done, just close the form, through the cross, to update Scalar properties.

SAD 8061 — 8065 / SAD806x

‘Scalars’ category menu:

By right clicking on a category, you can, in major part of cases access, to options. In case of ‘Scalars’
category, you will obtain this result (based on current status of memory and/or disassembly).

; Scalars (2342)

Rbase R0 MNew Element

Paste

Paste Multiple
Skip all
Unskip all

Clean Up Unmodified Elements

Following options are available here:

‘New Element’ : It displays creation part for an element in the related
category, a scalar here.

‘Skip all’ : It will set ‘Skip’ to true on all elements in the category,
scalars here. The danger is that all autodetected elements will be updated, and stored after a save in
the S6x file.

‘Unskip all’ : It will set ‘Skip’ to false on all elements in the category,
scalars here. The danger is that all autodetected elements will be updated, and stored after a save in
the S6x file.

‘Clean Up Unmodified Elements’ : It permits to remove/reset all autodetected elements, to
permit to exclude them from Séx file, when they were already saved in it, with their default values.
It permits to reduce S6x file size, generated by ‘Skip/Unskip all’ option and by the TunerPro export,
that will associate Ids to all exported elements.

To activate ‘Paste’ and ‘Paste Multiple’ options, it is required to copy an element in memory (from
SAD 806x or TunerPro, here normally, it should be a scalar.

New Element

Paste
Paste Multiple »

Skip all
Unskip all

Clean Up Unmodified Elements

- I I - R L L

SAD 8061 — 8065 / SAD806x

‘Paste’ : It will create/update the element, with all provided
properties, based on its category.

When copy was done from SAD 806, a default available address will be used and element is created.
It will appear in red in list to be corrected at address level.

When copy was done from TunerPro, TunerPro address is used mixed with ‘XDF Base Offset’ defined
in SAD 806x properties. If an element exists at this address, is will be overwritten and will appear in
purple in the list, otherwise, element is created and will appear in red in list to be checked.

‘Paste Multiple’ : It exists only for scalars and works only with SAD 806x data.
It permits to do a classical ‘Paste’, with an increment in address, but n times (1 time to 16 times).
For example, just take a byte scalar copied at address 0x2000. A ‘Paste Multiple’ 1 time, will create a
copy at address 0x2001. If it is a word scalar, it will be created at address 0x2002. For 3 times, you
will have 3 byte scalars created at 0x2001, 0x2002, 0x2003 or 3 word scalars created at 0x2002,
0x2004, 0x2006 and so on. If an address is already used, the related address will be ignored, nothing
will be created at this address.

SAD 8061 — 8065 / SAD806x

‘Scalar’ element menu:

By right clicking on an element, you can, in major part of cases, access to options. In case of ‘Scalar’
element, you will obtain this result (based on current status of memory and/or disassembly).

=)~ Scalars (2342) Al T

Rbase Rf0 end next adc

L. Rf0+3 Display ”
..... Rf0+4

..... Rf0+5 New

..... Rf0+6 Rename

..... Rf0+7 c

..... Rf0+8 opy

----- Ril+a Copy (xdf)

""" Rf0+c Paste

..... RfD+e _

_____ RfD+e Paste Multiple

----- RfQ+et Paste and Overwrite
..... RfD+e

..... RfD+2 Create Duplicate

""" Rf0+2 Set as Main

..... Rf0+24

----- Rf0+2¢ Search Operations
..... RfD+24 ‘

..... RfD+24 Skip

----- Rf0+21 Reset/Remove

..... Rf (s =

Following options are available here:

‘Display’

: Equivalent to the left click on the element, it will display the

properties and data of the selected element.

‘New’

category, a scalar here.

‘Rename’

: It displays creation part for an element with the same

: It put the element in the list in edit mode, to be renamed at

descriptor level. The same thing is possible with a short left click on the element in the list. After the
descriptor is changed, it is applied to the related value on the properties of the updated element.

‘Copy’

: It copies the current element into the clipboard, to be

reused in current SAD 806x session or in another one.

‘Copy (xdf)’

: It copies the current element into the clipboard, with

TunerPro format, to be reused in TunerPro.

‘Paste’

: It will create a new element or update an element (if

address matches and only when it is coming from TunerPro).
It is the same functionnality than the one on the category.

‘Paste Multiple’

: It exists only for scalars and works only with SAD 806x data.

It permits to do a classical ‘Paste’, with an increment in address, but n times (1 time to 16 times).

It is the same functionnality than the one on the category.

SAD 8061 — 8065 / SAD806x

‘Paste and Overwrite’ : It is the same functionality than ‘Paste’, with one major
exception, it will apply on the address of the selected element, properties coming from clipboard,
will in fact overwrite current element.

‘Create Duplicate’ : It is now possible to have multiple elements (of same
category) at the same address. It is just to be TunerPro compliant and for some strategies, re-using
scalers in a strange way. With this option, you can create a new Duplicate element at the same
address. In the output only the main one will be displayed, so we have main element for an adress
and its duplicates. Removing the element, will set its first duplicate, if it exists as the main one.

‘Set as Main’ : This option is available when the element is a duplicate one.
It permits to switch the main element with the current one to set it as main, with all related
consequences.

‘Search Operations’ : The goal of this option is to display, where the element is
used in code. So a short part of the code is generated, to display this result. Sometimes it is not
possible, but when it is working, it really helps. Result appears in a related ‘Operations’ tab, and it will
display where element it used (firstly): /

SAD 8061-8065 (KBAN7H4.BIN / KBAN7(H4)) - O X
File Disassembly OQutput Tools 7
=J- Scalars (2342) A Ri0+2 /)y [1] 2082 |

/ Z
Rbase Rf0 end next adc KBANTHABIN

Ri0s2 Byte 8065 Binary - 221184 Bytes
Rf0+3 » (2 KBANT7(H) Strategy

KBANTHA séx

Rf0+8 Banks :

Ril+a 0 00000 => OdEFE
02000 => 18£££
28000 => 3SEEE
1a000 => 27EEE

2
§
ooe

-Rfl+ec Properties Operftions

REazes :
Rf0+28e -
7,34 ldw R34, [7d2] R34 = [7d2]; A £0 (20€0), £2 (24b4)

o et £4 (272a), £€ (2cca)
.34 ST 3?4' [RE2+4c0] L . £8 (4848), £a (SbEE)
jnc 229¢ if ((uns) R34 < [Sc0084]) goto £c (€30e), fe (89€a)

00,34 cmpw R34, [Rf2+be]
jleu 22a€ if ((uns) R34 <= [Sc0083]) goto

00,34 ldb R34, [REE+ET] R34 = [Sc04501;

7,34 stb [7d3],R34 [7d3]1 = R34; Diszssembly done
7,46 ldb R4E, [7d3] R4€ = [7d3]; pems

stb [Rd4+cé], R4 [24€] = R4E;

Rf0+334 3 2 . af, £0,02, R4E, [RE0+2] (uns) [Sc0002];
. RF0+396 v |

8 22b3: 08,01, 4¢ shrw R4€,1 R4€ = R4€ / 2; v

‘Skip’ : It will directly set ‘Skip’ as true on selected element.

‘Reset/Remove’ : It will delete everything set by user, on the selected
element, so it is like a remove for a user created element (or before the disassembly) and like a reset
for an auto-detected element, which has been updated by the user, after disassembly.

Really removed element, will disappear after this option is executed, a reset on element, will keep it
visible and accessible.

SAD 8061 — 8065 / SAD806x

Functions:

A Function is a two columns table, using an input value to get an output one.

Input values can be bytes (8 bits) or words (16 bits) and Output values will have the same size. Input
values can be signed or unsigned and Output ones can also be. Setup on one row applies to the
whole function.

Because we are disassembling based on Intel instructions, word values are store low byte first (LSB in
TunerPro) in assembly.

Number of rows in function is never known or provided to related routine giving the result, this is
why it can be dangerous to update function values, in a bad way.

Also, auto detection of rows number, is based on minimum and maximum values, with other things,
it is not an exact science and it can be wrong, exactly like the routine would be.

It exists a specific type of function, which we will call ‘Scalers’. They are used to scale table’s inputs.
Auto detection tries to detect them, and to auto set their ‘Output Scale’, often to X/16 for byte
output and X/256 for word output. They are essential to work with tables.

‘Element Data’ part looks like the following one:

SAD 8061 — 8065 / SAD806x

8 SAD 8061-8065 (KBANTH4.BIN / KBAN7 (H4)) - u x
File Disassembly Output Tools ?
Function 011 A |[__Function 033
Function 012
KBANTHABIN
Function 013 Word Input Word Outout PSS Binary - 221184 Bytes
- Function 014 » |65535 10 [(BANT(H4) Strategy
Function 015 32768 10 KaanTHa s
Function 016 1
Function 017 0 0 L ——
Function 018 0 0 1
- Function 019 0 0 Banks :
Funcion 020 I} Geouo = ssece
§ 000 =
Function 021 I & 28000 = asese
MAF Transfer I s 1a000 => 27££¢
Function 023 1
-Function 024 =0 0|[Leeseseseseseseseses=esesessesssssssesesesesesessssssss=s======= 1
Function 025 L i
Function 026 Short Label Rows Number :;eiaéeo) , £2 (24b4)
Function 027 IFundion 033 ‘Fn039 |5 | £4 (2732), £€ (3cca)
Function 028 £8 (48d8), f£a (SbBE}
Function 029 [Signed Input nput Scale [] Signed Output Output Scale fc (€30e), fe (89€a)
Function 030 X
Function 031 Input Units Output Units
- Function 032 I [|
Funct?un 033 Disassembly done.
- Function 034 Comments Output Comments [] S seconds.
Function 035 Fn039 - Function 033
Function 036
- Function 037 e
Function 038 . |
- Function 039 v Validate Cancel

As you can see it is a Word Input, Word Output function, with two columns and their labels are clear

enough.

Only specificity for functions, two conversion options in menu, one for Input, the other for Outpout.

Decimal

Ignore conversion

Reverse Order

| Additional Input Conversion

Additional Output Conversion

SAD 8061 — 8065 / SAD806x

‘Element Properties’ part is the following one:

8 SAD 8061-8065 (KBANTH4.BIN / KBAN7 (H4)) — O X
File Disassembly Output Tools ?
Function 011 ~ I Function 039]1 | 2568 |
Function 012
KBANTH4 BIN
Function 013 Word Input Word Output 8065 Binary - 221184 Bytes
- Function 014 » [65535 10 KBANT(H4) Strategy
Function 015 32768 10 KBANTHA st
Function 016
Function 017 0 0
Function 018 0 0
- Function 019 0 0 Banks :
Function 020 0 00000 => OAEEE
1 0e000 => 1SEEE
Function 021 & 28000 => 3SELE
MAF Transfer { $ 1a000 => 27ELE
Function 023 4
- Function 024 T
Function 025 i 1
Function 026 Label Sh Rk
ort Label Rows Number Il £0 (2060), £2 (24ba)
Function 027 |Funcl|or| 033 [skip ‘ang 5 l 1| £4 (272a), £€ (2cea)
Function 028 1| £8 (4eae), f£a (sbee)
- Function 029 [] Signed Input Input Scale [] Byte [] Signed Output Output Scale || &= Hetlo &2 TS
Function 030 X X/256 1
Function 031 Input Units Output Units !
- Function 032 | ‘ l I
Function 033 : Diassemibly done
- Function 034 Comments Output Comments [] S seconds.
Function 035 Fn039 - Function 039 |
Function 036 |
- Function 037 e _
Function 038
- Function 039 v Validate Back Cancel

Another time, for something like all text fields, by using shortcut ‘Ctrl-Shift-U’ shortcut on selected
text, text will be upper cased, with ‘Ctrl-U’ it will be lower cased.

Generic properties are like following:

‘Label’ : Auto generated by default, based on auto numbering. It will be visible at the
element address in the output.

It will be exported as main description, and inside comment in TunerPro.

By using shortcut ‘Ctrl-R’ shortcut in this place, the related repository will be searched for a matching
based on ‘Short Label’. In our case ‘Functions Repository’.

‘Short Label’ : Auto generated by default, based on auto numbering. It will be visible in
code when element is used, and for sure at the element address too.

It will be exported with ‘Label’ inside comment in TunerPro, because it has no equivalent in
TunerPro.

By using shortcut ‘Ctrl-R’ shortcut in this place, the related repository will be searched for a matching
based on ‘Short Label’. In our case ‘Functions Repository’.

‘Skip’ : When skipped, user defined definition for element is ignored at
disassembly. Auto detection comes back to override the defined element.

‘Comments’ : Auto generated by default, with address in this case. It will be visible at the
element address in the output only if ‘Output Comments’ is checked.

It will be exported preceded with ‘Label’ and ‘Short Label’ in TunerPro, to keep trace of everything.
By using shortcut ‘Ctrl-R’ shortcut in this place, the related repository will be searched for a matching
based on ‘Short Label’. In our case ‘Functions Repository’.

Functions specific properties are like following:

SAD 8061 — 8065 / SAD806x

‘Byte’ : Checked, function is declared as byte one, byte input and output, otherwise
it is declared as ‘Word’. Detection is based on related routines.

‘Rows Number’ : Auto detected, rows number is one of the main information for
function.
‘Signed Input’ : Checked, input is declared as signed, otherwise it is declared as

unsigned. Detection is based on related routines.

‘Signed Output’ : Checked, output is declared as signed, otherwise it is declared as
unsigned. Detection is based on related routines.

‘Input Scale’ : Formula to obtain the right scaled input value. Scaled value will
appear in the output.

By using shortcut ‘Ctrl-R’ shortcut in this place, and on all related ‘Scale’ fields, the ‘Conversion
Repository’ will be searched entirely.

‘Output Scale’ : Formula to obtain the right scaled output value. Scaled value will
appear in the output.

By using shortcut ‘Ctrl-R’ shortcut in this place, and on all related ‘Scale’ fields, the ‘Conversion
Repository’ will be searched entirely.

‘Input Units’ : This is the data unit for the related input, which is only used in this
place and for TunerPro.

By using shortcut ‘Ctrl-R’ shortcut in this place, and on all related ‘Units’ fields, the ‘Units Repository’
will be searched entirely.

‘Output Units’ : This is the data unit for the related input, which is only used in this
place and for TunerPro.

By using shortcut ‘Ctrl-R’ shortcut in this place, and on all related ‘Units’ fields, the ‘Units Repository’
will be searched entirely.

‘Element Information’ for Function:

\

SAD 8061 — 8065 / SAD806x

File Disassembly Output

&8 SAD 8061-8065 (KBANTH4.BIN / KBANT(H4))

Tools 7

\

- Function 006
- Function 007
- Function 008
Function 009
Function 010
Function 011
Function 012
Function 013
Function 014
Function 015
Function 016
Function 017
Function 018
- Function 019
- Function 020
- Function 021
- MAF Transfer
Function 023
Function 024
Function 025
Function 026
Function 027
Function 028
Function 029
Function 030
Function 031
Function 032
- Function 033
- Function 034
- Function 035
Function 036
Function 037
Function 038
Function 039
Function 040
Function 041

Coomcdine NAD

~

Function 039

[1

| 258 |

Word Input

\
\

65535
32768
0
0
0

KBANTHA BIN
8065 Binary - 221184 Bytes
KBANT(H4) Strategy

KBANTHA. séx

Banks :

o 00000 => Odfff
0e000 => 1S££f
28000 => 3ISEEE
1a000 => 27££ff

@ e

Set as Columns Scaler on Table "Table 005" (26d4)
Identified as Columns Scaler on Table "Table 005" (26d4)
Input Registers : [202]

legazes -

I £0 (20€0), £2 (24b4)
£4 (273a), £€ (3cca)
£8 (48d8), £a (SbBE)
£c (€30c), fe (B89€a)

IDisassembly done.
|15 seconds.

Functions possess an additional ‘Element Information’ tab, which includes additional details grabbed

during disassembly and interessant to be known.

In this case, we discover, it has been auto detected as scaler for one table and set like that, because
no doubt was possible. We discover which Register is used as Input value too. For sure, when labels
are redefined, elements appear translated here.

Function specificities:

SAD 8061 — 8065 / SAD806x

8 SAD 8061-8065 (KBANTH4.BIN / KBAN7 (H4)) — O X
File Disassembly Output Tools ?
Function 011 ~|[Function 038 [1 T 258 |
Function 012
KBANTHABIN

Function 013 Word Input Word Output 8065 Binary - 221184 Bytes

- Function 014 » |65535 10 KBANT(H4) Strategy

Function 015 32768 10 KBANTHASE

Function 016

Function 017 0 0

Function 018 0 0

- Function 019 0 0 Banks :

Function 020 0 00000 => OAffEf

i 1 0e000 => 1S£fEf

Function 021 8 28000 => 3SEEE
MAF Transfer $ 1a000 => 27£££
Function 023
- Function 024

Function 025 L i

Function 026 Short Label Rows Number = (zoe0y, £2 (aem)
Function 027 IFundion 033 | [skip ‘Fn039 | |5 | £4 (273a), £6 (3cca)
Function 028 £8 (48d8), fa (SbBE)
- Function 029 [Signed Input Input Scale [Byte [Signed Output ~ Output Scale fc (€30e), fe (096a)
ot 00

Function 031 Input Units Output Units
- Function 032 I | [|

Fund:?un 033 e Bt oo
- Function 034 Comments Output Comments [] 5 seconds.

Function 035 Fn033 - Function 033

Function 036
- Function 037 -
Function 038 |
Function 039 o| | Vveidate [Back | _ Cancel

When function is opened when clicking on a table sclarer, ‘Back’ button appears to permit to come

back to table.

‘Functions’ category menu:

No specificity at all.

SAD 8061 — 8065 / SAD806x

‘Function’ element menu:

No specificity at all.

SAD 8061 — 8065 / SAD806x

SAD 8061 — 8065 / SAD806x

Tables:

Tables are essentially n columns multiplied by n rows containing scalars, often bytes (8 bits),
sometimes words (16 bits). But a table is always a fully bytes table or fully words table.

Input values can be bytes (8 bits) or words (16 bits) and Output values will have the same size.

One Input value for column position, another for row position. Output values can be signed or
unsigned. Setup on one row applies to the whole function.

Because we are disassembling based on Intel instructions, word values are store low byte first (LSB in
TunerPro) in assembly.

Number of rows in table is never known or provided to related routine giving the result, routine uses
3 input values, the columns number, the column position and the row position.

Column or row position are essentially coming from functions, with scaler type, having a scaled
output for position from 0 to n-1 column number or row number.

Also, auto detection of rows number, is based on possible sizes, with other things, it is not an exact
science and it can be wrong, even if related scalers are not detected or are not rights.

‘Element Data’ part looks like the following one:

SAD 8061 — 8065 / SAD806x

&8 SAD 8061-8065 (KBANTH4.BIN / KBANT(H4))

File Disassembly Output Tools 7

- Tables (121) ~|[Table oot

[1

| 214 |

:

- Table 002

N
w

o
@

Table 003 »

KBANTHABIN
8065 Binary - 221184 Bytes

Table 004

KBANT(H4) Strategy

Table 005
Table 006

KBANTHA. séx

Table 007

Table 008
Table 009

Table 010

Table 011

Banks :

00000 => Odfff

ol olololololo|la|_
D D N W o
@D D o NN e

Table 012
- Table 013

L RN I L L

D s ©
o o o o o o ol o

0e000
28000

1S££E
ISEEE

=
=

- Table 014
- Table 015
- Table 016

waeo

1a000 => 27££ff

Table 017
Table 018
Table 019

Properties
Label

Information
Short Label

[Table 001 | O skip [To001

Table 020

I RBases :

£0 (20€0)., £2 (24b4)

Table 021 Columns Scaler Rows Scaler

Table 022
Table 023 ‘ ‘

Table 024 Columns Units Rows Units

Cells Unit;

£4
£8
£c

(272a),
(48de),
(€30e),

£6
£a
fe

(3cca)
(SbBE)
(89€a)

Table 025 [| \

\

Table 026 Comments

- Table 027
. Table 028 Tb001 - Table 001

- Table 029

Disassembly done.

Table 030
Table 031
Table 032
Table 033
Table 034
Table 035

Tobio NIC

Validate

S seconds.

This is a result where scalers are not detected. Columns and row

label are defaulted.

@8 SAD 8061-8065 (KBAN7HA.BIN / KBAN7(H4))

File Disassembly Output Tools 7

[=- Tables (121) ~ Table 003

Table 001
2400

4800 7200 8400

Table 002
> 0 8

'
w

s 4

S Binary - 221184 Bytes

Table 003
3200

48 27 23

117 KBANT(H4) Strategy

Table 004
6400

Table 005
sk 74 58
9600

86 7

42 IKBANTH4 s6x

Table 006
12800

92 87

Table 007
- Table 008

16000
19200

93 9
95 9%

|97

101 00000 => Odfff

Table 012

- Table 009
- Table 013 25600

95 97 100

0e000
28000

=
=

19£££
3ISEEE

88|88 8|8

|110

- Table 010
32000

Table 014 91 9% 101

senep

1a000 => 27£££

|

- Table 011
48000

Table 015 101 101

| 109

]

Table 016

Table 017
Table 018
Table 019

Properties
Label

Short Label Columns Number

Rows Number

[Table 003 | O skip [Tb003 |

[10

I RBases :

£0 (20€0), £2 (24b4)

Table 020

- Table 021
- Table 022
- Table 023 ‘

Columns Scaler Rows Scaler

S

[signed

[J Word

- Table 024 Rows Units

Cells Units

£4 (272a),
£8 (48d8),
£c (€20e),

£€
£fa
fe

(3cca)
(SbBE)
(89€a)

Scale

Table 025 [| [

- Table 026

Output Comments []

Table 027
Table 028
Table 029

Tb003 - Table 003

Disassembly done.

Table 030
Table 031
Table 032
Table 033
- Table 034
- Table 035

Tobis A2C

Validate

5 seconds.

SAD 8061 — 8065 / SAD806x

And a result with labelled rows and columns, based on scalers and their input values (Function 037

and Function 036).

Not other specificity exists, but you can see the interest to have the right scaler set at this level.

‘Element Properties’ part is the following one: \

SAD 8061 — 8065 / SAD806x

&8 SAD 8061-8065 (KBAN7H4.BIN / KBAN7(H4)) - O X
File Disassembly Output Tools ?
- Tables (121) ~|[Table003 [1 T 260]
Table 001
2400 4800 7200 8400 10800 12000 16000 22000 28000
Table 002 KBAN7H4.BIN
Table 003 > 0 8 6 4 4 3 2 2 3 3 8065 Binary - 221184 Bytes
Table 004 3200 |57 48 27 23 17 17 16 1 12 RRAALLS Sestuay
Table 005 T
- KBANTH4 56;
Tabie 006 6400 |78 74 58 55 46 4 30 25 20 x
Table 007 9600 |84 86 79 79 7 66 51 <L 36
Table 008 = =
84 92 87 90 87 86 69 61 50
Table 009 12800
Table 010 16000 |86 92 91 95 9% 97 81 68 54
?E:e g:; 19200 (86 95 % 98 99 101 87 75 60 Bm:, :ooooo => Odfff
e - 1 0e000 => 19£ff
Table 013 25600 |86 > 3 2 104 Ll s A i 8 z:ooo => 25£££
Table 014 2000 |87 91 % 100 105 109 %2 80 7 s 1a000 => 27£££
Table 015 48000 |96 101 101 102 106 109 95 84 75
Table 016
Table 017 : Properties Information :
I:::: 83 | Label Short Label Columns Number Rows Number I
REases :
Table 020 : Table 003 ‘ O skip [Tb003 | [10 ‘ [10 l £0 (20€0), £2 (24b4)
£4 (273a), £€ (3)
Ia::e gg | Columns Scaler Bows Scaler [Signed Scale : £8 (dﬁd:l , £a |slc=::1
able 3 3 X £fc (€20e), fe (896a)
Table 023 : Function 037 Function 036 [J word [X 1
Table 024 | Columns Units Rows Units Cells Units 1
Table 025 i \ :
Ial;:e ggs | Comments Output Comments [] 1
able 027 1 »
Table 028 | Tb003 - Table 003 1
Table 029 | :gﬂswﬂw dene
Table03) 0 e mm - — - - ol
Table 031 Validate Cancel
Table 032
Table 033
Table 034 E—
Table 035
Tkl N2C Y.

Another time, for something like all text fields, by using shortcut ‘Ctrl-Shift-U’ shortcut on selected

text, text will be upper cased, with ‘Ctrl-U’ it will be lower cased.
Generic properties are like following:

‘Label’ : Auto generated by default, based on auto numbering. It will be visible at the
element address in the output.

It will be exported as main description, and inside comment in TunerPro.

By using shortcut ‘Ctrl-R’ shortcut in this place, the related repository will be searched for a matching
based on ‘Short Label’. In our case ‘Tables Repository’.

‘Short Label’ : Auto generated by default, based on auto numbering. It will be visible in
code when element is used, and for sure at the element address too.

It will be exported with ‘Label’ inside comment in TunerPro, because it has no equivalent in
TunerPro.

By using shortcut ‘Ctrl-R’ shortcut in this place, the related repository will be searched for a matching
based on ‘Short Label’. In our case ‘Tables Repository’.

‘Skip’ : When skipped, user defined definition for element is ignored at
disassembly. Auto detection comes back to override the defined element.

‘Comments’ : Auto generated by default, with address in this case. It will be visible at the
element address in the output only if ‘Output Comments’ is checked.

It will be exported preceded with ‘Label’ and ‘Short Label’ in TunerPro, to keep trace of everything.
By using shortcut ‘Ctrl-R’ shortcut in this place, the related repository will be searched for a matching

based on ‘Short Label’. In our case ‘Tables Repository’.

SAD 8061 — 8065 / SAD806x

Table’s specific properties are like following:

‘Columns Number’ : Auto detected, by direct read in code, columns number is
one of the main information for table.

‘Rows Number’ : Auto detected, rows number is one of the main information
for table.
‘Word’ : Checked, table is declared as word one, word output,

otherwise it is declared as byte output. Detection is based on related routines.

‘Signed’ : Checked, output is declared as signed, otherwise it is
declared as unsigned. Detection is based on related routines.

‘Scale’ : Formula to obtain the right scaled output value. Scaled value will
appear in the output.

By using shortcut ‘Ctrl-R’ shortcut in this place, and on all related ‘Scale’ fields, the ‘Conversion
Repository’ will be searched entirely.

‘Columns Units’ : This is the data unit for the related column input, which is only used
in this place and for TunerPro.

By using shortcut ‘Ctrl-R’ shortcut in this place, and on all related ‘Units’ fields, the ‘Units Repository’
will be searched entirely.

‘Rows Units’ : This is the data unit for the related row input, which is only used in
this place and for TunerPro.

By using shortcut ‘Ctrl-R’ shortcut in this place, and on all related ‘Units’ fields, the ‘Units Repository’
will be searched entirely.

‘Cells Units’ : This is the data unit for the output, for cells, which is only used in
this place and for TunerPro.

By using shortcut ‘Ctrl-R’ shortcut in this place, and on all related ‘Units’ fields, the ‘Units Repository’
will be searched entirely.

‘Columns Scaler’ : Auto detected, this is the scaler function for columns. Specific
format is used here, a clickable label and a clickable button. To see the complete description of the
scaler, just move the move over the button. To open the related function, just click on the label
(when a scaler is in place). To select a new scaler (function should already exist), just click on the
button to access to the ‘Scaler Search’.

‘Rows Scaler’ : Auto detected, this is the scaler function for columns. Everything
described for ‘Columns Scaler’ applies to ‘Rows Scaler’.

SAD 8061 — 8065 / SAD806x

‘Scaler Search’:

When clicking on the scaler button, you can access to its search, which is something like a repository
search, with a text search and a result.

Columns Scaler Rgws Scaler b

| Function 037 & | Function 036 C

Columns Unit Fn037 / Units C
c

:| Related Scalers » | None

Comments

I Function 037

‘Tbl}m - Table 003

By default, selected function ‘Short Label’ is used for searching, because the number of results is
limited for performance reasons.

To search another function, just update the text search part and then, open the ‘Related Scalers’.
Search is done on many properties of the function.

Columns Scaler Rows Scaler [Signed Scale
Function 037 y 13 Word X
I on | e fI ‘ E l:l
Columns Units Cells Units
l Related Scalers » None
Comments MAF Transfer | Comment
Th003 - Table 003
FNO36
Validate FNO36 - MAF Transfer

You will say that ‘MAF Transfer’ function FNO36 is not a scaler, and you are right, search is done on all
available functions. But like this, you can see what appears, when the mouse is over an element in
the list.

The ‘None’ element, permits to remove the scaler on the table.

SAD 8061 — 8065 / SAD806x

‘Element Information’ for Table: \

8 SAD 8061-8065 (KBAN7HA.BIN / KBAN7(H4)) - O X
File Disassembly Output Tools 7
- Tables (121)][Table 003 \ 1] 260c |
- Table 001 \
) 2400 4800 Y200 8400 9600 10800 12000 16000 22000 28000
Table 002 e
IN
Table 003 » 0 8 s 4 4 3 [3 2 2 3 E 5065 Binary - 221184 Bytes
?b'e ﬁ 3200 |57 48 27 2 19 17 17 16 11 12 EEARAE S
bl | | | | |
Tt 008 sa00 |78 ™ 58 55 52 4 2 2 5 2 KBANTHAstx
Table 007 9600 |84 86 7 7 74 7 66 51 4 3%
Table 008 | I | I I
84 2 87 89 87 8 69 &1
Table 009 12600 | | i | | |50
Table 010 16000 |86 93 91 95 9% 9% 97 81 68 54
Table 011 15200 (86 95 9% 98 99 99 101 87 7 60 Banks :
Table 012 T T T T 1 0 00000 => Odf£f
25600 |86 95 97 100 104 110 89 7 68 1 0e000 => 1SEEF
- Table 013 1 1 t t 1 B 28000 => 25££E
- Table 014 32000 (87 9 |96 1 0 1105 1108 92 80 N S 1a000 => 27£££
- Table 015 43000 |96 101 101 10 104 106 109 95 8 75
- Table 016 . .
Table 017 o g il

Table 018
Table 019 I
Table 020 I
Table 021 1
Table 022 1
Table 023 1

- Table 024 1
- Table 025 I
- Table 026 1
Table 027 1
Table 028 1
1

1

1

1

1

1

1

1

|

identified Columns Scaler could be Function "Function 037" (25¢8)
Identified Rows Scaler could be Function “Function 036" (25a8) |REases :

Output Registers : [516] £0 (20€0), £2 (24b4)
£4 (272a), £€ (2cca)
£8 (48d8), £a (5bBE)
fc (€20e), fe (89€a)

Table 029
Table 030
Table 031
Table 032
Table 033
Table 034
Table 035
Table 036 v

| Disassembily done.
5 seconds.

Tables possess an additional ‘Element Information’ tab too, which includes additional details grabbed
during disassembly and interessant to be known.

In this case, we discover, it has been auto detected with both scalers. We discover which register is
used as output value too. For sure, when labels are redefined, elements appear translated here.

SAD 8061 — 8065 / SAD806x

Table specificities:

No specificity at all, except scalers.

‘Tables’ category menu:

No specificity at all.

SAD 8061 — 8065 / SAD806x

‘Table’ element menu:

No specificity at all.

SAD 8061 — 8065 / SAD806x

SAD 8061 — 8065 / SAD806x

Structures:

Structures are non-generic elements, in fact neither a scalar, nor a function, nor a table.
Scalars, functions and tables can be described by a structure, but the opposite is not always true.

Structures are a set of scalars assembled in different ways, sometimes with rules, sometimes not.

Routines using them are specific too. Even if they can be identified, they have so many different
types, than it is really difficult to manage them properly, compared to routines used for functions
and tables.

Main information for structures are its definition, just called ‘Structure’, which describes what is
where and with which rules and its occurrence number ‘Number’, the number of times it repeats to
give the whole structure.

Because we are disassembling based on Intel instructions, word values are store low byte first (LSB in
TunerPro) in assembly.

Structures auto detection is globally basic, but Structures definitions auto detection is something
much more complex, because it requires to fully understand the routine(s), which are using the
structure.

This is why some tries are done to complete these definition and number, but they often finish with a
default definition (1 byte or 1 word) and a default number (1), but it remains a good start to analyze
related routine and to prepare future signatures.

‘Element Data’ part looks like the following one:

SAD 8061 — 8065 / SAD806x

&8 SAD 8061-8065 (KBANTH4.BIN / KBANT(H4))

File Disassembly Output Tools 7

- Properties

|- Reserved (185)
#]- Tables (121)

#}- Functions (497)
3]

)

&-F-F-5

Scalars (2342)
Structures (207)
Structure 002
Structure 003
Structure 004
Structure 005
Structure 006
- Structure 007
- Structure 008
- Structure 009
- Structure 010
- Structure 011
- Structure 012
- Structure 013
- Structure 014
- Structure 015
- Structure 016
- Structure 017
Structure 018
- Structure 019
- Structure 020
- Structure 021
Structure 022
Structure 023
Structure 024
Structure 025
Structure 026
Structure 027
Structure 028
Structure 029
Structure 030
Structure 031

o

>

| Structure 001

—

1

» |c56

I

KBANTHA.BIN

KBANTH4 s6x

Banks -

00000
Oe000
28000
1a000

W

Label

Short Label

Structure 001

‘ [skip ‘3‘0001

Structure

WordHex

Comments

Output Comments []

Structure definition was defaulted

\

Validate

=
=
=5
=

8065 Binary - 221184 Bytes
KBANT(H4) Strategy

OdE£E
1SE££E
3SEEE
27££E

RBases :

£0 (20€0),
£4 (273a),
£8 (48d8),
£c (€20e),

£2
£€
£a
£fe

(24b4)
(2cea)
(5bBE)
(89€a)

5 seconds.

Disassembly done.

This is a basic data output and as you can see, when ‘Comments’ indicates that, it not fully

recognized.

File

Disassembly ~ Output

&8 SAD 8061-8065 (KBAN7HA.BIN / KBAN7(H4))

Tools ?

Other Structure 1037
Other Structure 1038
Other Structure 1039
Other Structure 1040
Other Structure 1041
Other Structure 1042
- Other Structure 1043
- Other Structure 1044
- Other Structure 1045
- Other Structure 1046
Other Structure 1047
Other Structure 1048
-- Other Structure 1049
- Other Structure 1050
- Other Structure 1051
- Other Structure 1052
- Other Structure 1053
- Vectors List 1054
- Other Structure 1 055
- Other Structure 1 056
- Other Structure 1 057
- Vectors List 1058
- Other Structure 1059
Vectors List 1060
Vectors List 1061
Other Structure 1062
Other Structure 1063
Other Structure 1064
Other Structure 1065
Other Structure 1066
- Other Structure 1 068
- Other Structure 1 069
- Other Structure 1070
Other Structure 8 001
[#)- Routines (1412)
Operations (0)

~

Other Structure 1067

) [1 [b5 |

1 2

» |C800
C800
C800
C800

MAEBEEEEIBEIE

KBANTHA.BIN

KBANTHA s6x

Pni: 3

o ooooo
0e000
28000
la000

W e

Label

Short Label

Number

=
=
=
=

B065 Binary - 221184 Bytes
KBANT(H4) Strategy

Odfff
19£££
3SEEE
27££E

Other Structure 1067

| O1 skip [0st1_067

| [153

Structure

| &/

Hex:2
Hex:2
Hex:2
Byte

Word

Comments

Output Comments []

Validate

RBases :

£0 (20€0),
£4 (272a),
£8 (48dE),
£c (€30e),

£2
£€
£a
fe

(24b4)
(3cea)
(S5bBE)
(8%€a)

5 seconds.

Disassembly done.

SAD 8061 — 8065 / SAD806x

This one is much better, you can see that data output evolves based on structure definition.

With conditional rules, it can give other more complex things.

SAD 8061 — 8065 / SAD806x

‘Element Properties’ part is the following one:

File Disassembly Output Tools 7

- Properties " ‘ Structure 001
+)- Reserved (185)

IEN

&8 SAD 8061-8065 (KBANTH4.BIN / KBANT(H4)) \ - - x
1 \

+)- Tables (121) KBANTHABIN
+)- Functions (497) » |c56 8065 Binary - 221184 Bytes
&

Scalars (2342) KBANT(H4) Strategy

Structures (207)
Structure 002
Structure 003
Structure 004
Structure 005
Structure 006 Banks :
Structure 007 0 00000 => OdE£f

0e000 => 1G£££

Structure 008 28000 => 3SEEE
Structure 009 1a000 => 27£££
Structure 010
Structure 011
Structure 012
Structure 013
Structure 014
Structure 015
Structure 016
Structure 017
Structure 018
Structure 019
Structure 020
Structure 021
Structure 022
Structure 023
Structure 024 Disassambly done
Stucture 025 @ L f C fE m fC C fC C C E C C C Em C C C C C E C E € C C e m m e e e e e e e — - 5 seconds.
Structure 026 Validate Cancel
Structure 027
Structure 028
Structure 029
Structure 030 ————

Structure 031 v

KBANTHA s6x

w o e

Properties

Label Short Label Number 4
Structure 001 | O skip [st0001 1

Structure

WordHex

Y
e

RBases :
£0 (20€0), £2 (24b4)
£4 (272a), £€ (2cea)
£8 (48d8), fa (5bBE)
£c (€20e), fe (89€a)

Comments Output Comments []
Structure definition was defaulted

===

Another time, for something like all text fields, by using shortcut ‘Ctrl-Shift-U’ shortcut on selected
text, text will be upper cased, with ‘Ctrl-U’ it will be lower cased.

Generic properties are like following:

‘Label’ : Auto generated by default, based on auto numbering. It will be visible at the
element address in the output.

By using shortcut ‘Ctrl-R’ shortcut in this place, the related repository will be searched for a matching
based on ‘Short Label’. In our case ‘Structures Repository’.

‘Short Label’ : Auto generated by default, based on auto numbering. It will be visible in
code when element is used, and for sure at the element address too.

By using shortcut ‘Ctrl-R’ shortcut in this place, the related repository will be searched for a matching
based on ‘Short Label’. In our case ‘Structures Repository’.

‘Skip’ : When skipped, user defined definition for element is ignored at
disassembly. Auto detection comes back to override the defined element.

‘Comments’ : Empty by default, it indicates that definition detection has not been a
success, when its value is ‘Structure definition was defaulted’. It will be visible at the element address
in the output only if ‘Output Comments’ is checked.

By using shortcut ‘Ctrl-R’ shortcut in this place, the related repository will be searched for a matching
based on ‘Short Label’. In our case ‘Structures Repository’.

Structures specific properties are like following:

SAD 8061 — 8065 / SAD806x

‘Structure’ : Auto detected if possible, otherwise it is indicated with ‘Comments’.
It is the definition of the structure, which describes what is where and with which rules, in a
comprehensible dedicated text format.

‘Number’ : Auto detected if possible, but not always used, based on type of
definition. It is the number of times it repeats to give the whole structure.

‘Yellow Smiley’ image : With mouse over this image, you have some information, about
how to write the structure definition. When clicking on it, you have a window with the same
information. It is a good starting point.

SAD 8061-8065 X ‘

Structure Options

Data Types:

- Decimal: Byte, Word, SByte (Signed Byte), SWord (Signed
Word)

- Hexadecimal: ByteHex (Lowered), WordHex(Lowered), Hex,
HexLsb (Lsb First 2 by 2)

- Other: Skip, Ascii, "String”, Vect8, Vect1, Vect9, Vect0, Empty
Special Keys:

- Carrier Returns: "\n’

Basic tests(on byte position in structure line):

- B0 (B0=1) to B7 (B7=1), !BO (BO=0) to !B7 (B7=0), 00, !00, FF, !FF

Sample:

Byte:2, Word,Hex:4,Ascii:8
Hex,Byte:8

Word:2,Byte

1f(B0:2) {

Byte:2, Word

} Else {

Byte:2,Word:2 }

SAD 8061 — 8065 / SAD806x

Structure Definition format:
Following item keywords are available (do not use ‘ character):

- Decimal ones, with a decimal output:

‘Byte’ : Byte Item (1 Byte),
‘Word’ : Word ltem (2 Bytes),
‘SByte’ : Signed Byte Item (1 Byte),

‘SWord” :Signed Word Item (2 Bytes)

- Hexadecimal ones, with an hexadecimal output:
‘ByteHex’ : Byte Item with lowered output (1 Byte),
‘WordHex’ : Word Item with lowered output (2 Bytes),
‘Hex’ : Hexadecimal Item (1 Byte),
‘HexLsb’ : Hexadecimal Item with Lsb First 2 by 2 (1 Byte)

- Other ones, with a specific meaning:
‘Ascii’ : 1 Byte gives an Ascii output,
‘Skip’ : 1 Byte Item is ignored,
‘Empty’ : 1 Empty Item, not related with data, only for formatting,
“"STRING" : 1 string as output, not related with data (STRING here),

“\n" : 1 carrier return, not related with data,

‘Vect8' : 2 Bytes for a vector address. First operation will be on bank 8,
‘Vectl’ : 2 Bytes for a vector address. First operation will be on bank 1,
‘Vect9’ : 2 Bytes for a vector address. First operation will be on bank 9,
‘Vect0’ : 2 Bytes for a vector address. First operation will be on bank 0

VectX keywords, will permit to extend disassembly on the detailed vectors (or routines), if they were
not found before. You will see that a specific type of structure, which is ‘Vector List’, is generated, it
is @ main part of disassembly on works on this base.

Following separators keywords are available, they permit to keep code more clear (do not use
character):

- : Space one,
- : Comma one,
- Carrier return : Carrier return one

Multiplying items principle:

Instead of writing ‘Hex,Hex,Hex,Hex’, you can write ‘Hex:4’. This is the case for all types of
items, by adding after the item keyword “:N’ where N is the number of desired items.

Conditional rules principle:

SAD 8061 — 8065 / SAD806x

To use condtional rules, you have to use following architecture:
‘If (<CONDITION>:#BytePosition) { Items list (when <CONDITION>:#BytePosition) is true) } Else { ltems
list (when <CONDITION>:#BytePosition is false) }

You can include new conditions inside items lists, because a conditional rule is managed like
an item itself.

Condiction definition for <CONDITION> and #BytePosition:

<CONDITION> can have limited number of values, based what is really required for a
structure. It is essentially a bit check or a value comparison and it can be negated, like following:

- ‘B0’ /’!BO :B0=1/B0=0

- ‘B1’to ‘B7 :Bl=1toB7=1, so B2, B3, B4, B5, B6 too

- ‘IB1’to ‘IB7’ :B1=0to B7 =0, so B2, B3, B4, B5, B6 too

- ‘00’ / ‘o0’ : Related Byte = 0x00 / Related Byte <> 0x00

- FF /IFF : Related Byte = OxFF / Related Byte <> OxFF

- ‘01" to ‘FE’ : It works also for other values, except in range BO to B7.
- ‘101’ to ‘IFE’ : It works also for other values, except in range BO to B7.

#BytePosition is the Byte position to test inside the current structrue occurrence.

If structure defition is 2 Bytes with a number of 3, you can only set a test for Byte 1 or Byte 2.
It can become a bit complicated with variable size occurences, but in fact routine using
structure is working like that.

For sure for each occurrence, the right value will be checked.
Some example of conditional rule:

If (BO:2) { Byte:2,Word } Else { Byte:2,Word:2 }

which can be written

If (BO:2) {
Byte:2,Word

} Else {
Byte:2,Word:2
}

or

If (1B0:2) { Byte:2,Word:2 } Else { Byte:2,Word }

With a bit of practicing, things will become more clear.

Structure specificities:

SAD 8061 — 8065 / SAD806x

A described previously, you have different types of structures, including ‘Vectors List’.

&8 SAD 8061-8065 (KBAN7H4.BIN / KBAN7(H4)) - O X
File Disassembly Output Tools 7
- Other Structure 1037w || Vectors List 1054 1] ade2]
- Other Structure 1038 . ~
- Other Structure 1039 = CBANTHABIN
Other Structure 1 040 » | 7abf 5085 Binary - 221184 Bytes
Other Structure 1041 Tach KBANT(H4) Strategy
Other Structure 1042 7ac3 KBANT
Other Structure 1043
Other Structure 1044 Tae2
Other Structure 1045 Fac7
- Other Structure 1 046
- Other Structure 1047 Toca
- Other Structure 1048 Tabf Banks :
0 00000 => OdEEE
—Other Skucture 1049 Tace 1 0e000 => 1S£ff
- Other Structure 1050 & 28000 =» 25££f
- Other Structure 1051 Tace S 1a000 => 27£££
- Other Structure 1052 Tabf
- Other Structure 1053 v
B Vecios Lst 1054 -
P
- Other Structure 1 055 ¢
- Other Structure 1056 Label Short Label Number L' 2 L
p : azes :
- Other Structure 1057 [Vectors Lst 1054 | 7 skip [Veclst1 08¢ | [13 | v £0 (20€0), £2 (24b4)
- Veectors List 1058 Structure £4 (2723), £€ (2cca)
. Other Structure 1059 Ty £ (4848), fa (5bBE)
Vedtors List 1060 fc (€20e), fe (8%€a)
- Vectors List 1061
- Other Structure 1 062
- Other Structure 1063
. Other Structure 1064 Comments Output Comments []
Other Structure 1065 Structure definition was defaulted
Other Structure 1066 e bly done.
Other Structure 1067 5 saconds.
Other Structure 1068 Validate Cancel
Other Structure 1069
Other Structure 1070
Other Structure 8 001
- Routines (1412) I
Operations (0) v
But also classical calibration structure, related with RBases.
&8 SAD 8061-8065 (KBAN7H4.BIN / KBAN7(H4)) - O X
File Disassembly Output Tools 7?7
- Structure 024 ~ | Stucture 040 [1] 6eea |
- Structure 025 .
Structure 026 KBANTHABIN
Structure 027 » |4080 5065 Binary - 221184 Bytes
Structure 028 KBANT(H4) Strategy
Structure 029 =
Structure 030
Structure 031
Structure 032
- Structure 033
- Structure 034
- Structure 035 Banks :
- Structure 036 0 00000 => OdE£f
1 0e000 => 1S£££
- Structure 037 E o =
- Structure 038 $ 1a000 => 27EEE
Properties
Label Short Label Number 3 &%
y RE :
Structure 040 ‘ [skip ‘StDNO | |1 | v ;:“(zuen). £2 (24b4)
Structure £4 (272a), £€ (3cca)
£ (4848), fa (5bBE)
Word £fc (€20e), fe (89€a)
Comments Output Comments []
Structure definition was defaulted
Disassembly done.
5 seconds.
Validate Cancel
|
v

SAD 8061 — 8065 / SAD806x

And main part of them, not related with RBases.

&8 SAD 8061-8065 (KBANTH4.BIN / KBANT(H4)) — O X

File Disassembly Output Tools 7

- Other Structure 1029 |[Other Structure 1064 [1] b1s0]
- Other Structure 1030

1 ~
- Other Structure 1031 e
Other Structure 1032 » |fe 5065 Binary - 221184 Bytes
Other Structure 1033 fd KBANT(H4) Strategy
Other Structure 1034 © T
Other Structure 1035
Other Structure 1036 7
Other Structure 1037 o
Other Structure 1038
Other Structure 1039 o«
- Other Structure 1040 bf Banks :
- Other Structure 1041 0 00000 => OdEfff
i 1 0e000 => 1SEEf
- Other Structure 1 042 8 28000 => 3SEEE
- Other Structure 1043 0 ® 1a000 => 27££f
- Other Structure 1044 1
- Other Structure 1045 v
- Other Structure 1 046 Propetties

- Other Structure 1 047

- Other Structure 1048 Label Short Label Number ¢ 3 B
5 ases :

- Other Structure 1049 [Other Structure 1064 | O skip [Ost1064 |16] &/ L I
- Other Structure 1050 Structure £4 (272a), £€ (3cca)
- Other Structure 1051 ByteHex £8 (48d8), fa (5bBE)
-- Other Structure 1052 £c (€20e), fe (B9€a)
- Other Structure 1053
- Vectors List 1054
- Other Structure 1055

Other Structure 1056 Comments Output Comments []

Other Structure 1057

Vectors List 1058 i e

Other Structure 1059 :":; iy

Vectors List 1060 Validate Coxd

Vectors List 1061

Other Structure 1062

Other Structure 1063
I
Other Structure 1065

As you can see they use by default specific ‘Label’ and ‘Short Label’ based on their type, to help
differenciating them.

‘Structures’ category menu:

No specificity at all.

SAD 8061 — 8065 / SAD806x

‘Structure’ element menu:

No specificity at all.

SAD 8061 — 8065 / SAD806x

SAD 8061 — 8065 / SAD806x

Routines:

Routines do not exist in a real way in assembled code. An assembly is just a huge quantity of
operations, not written like it would be with a modern tool, grouped inside routines. SAD 806x tries
to recreate a kind of operations architecture, were it appears to be nothing. Based on calls, gotos and
return instructions, something begins to appear and ‘Routines’ that come to this definition are some
kind of best of.

A real routine would be a part of code, called many time and we have some routines like this. For
example, Tables or Functions are detected based on dedicated routines, previously detected.

Basically, a routine is defined by the address of its first operation.

In SAD 806x routines are used to add some labels in output, as far as obtaining a better disassembly
by adding new routines or setting up their parameters, if they have some.

Another use of them is at comparison level, because between strategies, if some routines are similar,
you have chances to use the same calibration elements in them. So they are an excellent base to
compare strategies.

Some known routines are fixed at their address level vs bank number vs EEC version, so they will be
directly named and given as result.

Another way to create them is to work with signatures. Tables or Functions routines are detected
through hard coded signatures, but you can create new signatures, inside definition to auto identify
known routines shared between strategies.

SAD 8061 — 8065 / SAD806x

‘Routine Properties’ part is the following one:

&8 SAD 8061-8065 (KBANTH4.BIN / KBANT(H4)) — O X

File Disassembly Output Tools 7
=)- Routines (1412) ~ ‘ Bank 0 Start ID | 2000 ‘

:
Intemupt High Speed Out KBANTHABIN
Intemupt High Speed Out 8065 Binary - 221184 Bytes
Intemmupt High Speed Out KBANT(H4) Strategy
Intemupt High Speed Out
Intemupt High Speed Out
Intemupt High Speed Out
Intemupt High Speed Out
Intemupt High Speed Out
Intemupt High Speed Out
Intemupt High Speed Out Banks :
- Intemupt High Speed Out = goggg - 2::2
- Intemupt High Speed Out a;ooo - asees
- Intemupt High Speed Out 1a000 => 27£££
Intemupt High Speed Out ‘}
Intemupt High Speed Out | @ @ @ o o o o e e e e e e e e e e o o o o e e e e e — — — — — — — — ——— e e e
Intemupt High Speed Out I !

KBANTH4.s6x

w o e

1 Properties
Intemupt High Speed Inp1
intemupt Extemal 1 Label Short Label
) A dvance RE. :
Intemupt High Speed Inpi :‘ Bank 0 Start ‘ [skip Advanced Brk0Start :z“(eo:‘on . £2 (24b4)

Intemupt Hight Speed Ing \
Intemupt High Speed Inpt Embedded Byte
Intemupt Analogic/Digital | Arguments Number Advanced Properties

1
1
1
: £4 (272a), £€ (3cca)
1
p 1 1
Intemupt Analogic/Digital Iljl [Ovenide I
1
1
1
1

£8 (48d8)., fa (5bBE)
fc (€30e), fe (B9€a)

- Intemupt Analogic Timer ¢ \
- Intemupt Analogic/Digital ICOmments COutput Comments []
- Intemupt Analogic Timer | 0 2000
- Intemupt Counter 0
intemupt Counter 1 . _____
Intemupt Counter 2 § seconds
Intemupt Counter 3 Validate Cancel
Intemupt Software 0
Intemupt Software 1
Intemupt Software 2

temupt Software 3 I

Generic properties are like following:

‘Label’ : Auto generated by default, based on auto numbering or based on known
addresses. It will be visible at the routine address in the output.

‘Short Label’ : Auto generated by default, based on auto numbering or based on known
addresses. It will be visible in code when routine is called, and for sure at the routine address too.

‘Skip’ : When skipped, user defined definition for routine is ignored at disassembly.
Auto detection comes back to override the defined routine.

‘Comments’ : Auto generated by default, with address in this case. It will be visible at the
element address in the output only if ‘Output Comments’ is checked.

Routines specific properties are like following:

‘Advanced’ : Checked, it indicates that routine is an advanced one, that it
is related with special scalars or structures, function or tables, or that it basically has arguments
when called. It is a read only information, which can be managed only with ‘Advanced Properties’
button. It is auto detected or can be generated by signatures.

‘Embedded Byte Arguments Number’ : This is the number of arguments, provided when routine is
called. It is a read only information, which can be managed only with ‘Advances Properties’ button. It
is auto detected or can be generated by signatures. ‘Override’ checkbox permit to order SAD 806x to
prefer updated number (built through ‘Advanced Properties’ form), instead of detected one.

SAD 8061 — 8065 / SAD806x

Because it is a sensible information, which can broke the disassembly, by putting bad operations at

bad addresses, ‘Override’ option should be managed properly.

SAD 8061 — 8065 / SAD806x

‘Routine Advanced Properties’ form is the following one:

& Advanced Routine - O X
Byte Function Reader S| 8273
=I- Routine Elements Detection Input Argument Input Structure Input Table Input Function nput Scalar
Input Arguments
Input Structures Address Input Register/Argument Input Register/Argument Output Register
Input Tables [_,. R38 |H&:—|
(=~ Input Functions R36 ‘ l J
R36
Input Scalars Byte Signed Input [Signed Output
Forced Rows Number
T Forced Input Scale Forced Output Scale
Forced Input Units Forced Output Units

It is accessible, through the ‘Advanced Properties’ button. In our cases we will start from a Byte
Function Reader, which is a good basis for description.

The left part of the screen is a list of possible Inputs for the routine. The right one will detail
properties for these inputs. To add a new Input, just right click on the right place on the list to access
the ‘New Element’ menu option for Inputs.

Basically known functions routines have only 1 input function (its address in fact) and can have
arguments, known table routines have only 1 input table (its address in fact) and no arguments.

It is possible to setup a routine with everything in multiple samples, but for now realistic things will
be easier to explain.

Principle is simple, with a routine like this one, we are able to detect, for each call, a function and its
parameters, so it is interesting to setup this, when possible.

SAD 8061 — 8065 / SAD806x

Input Argument Input Structure Input Table Input Function Input Scalar

Address Input Register/Argument Input Register/Argument Output Register
|GEE | IR38 | R3c

Byte Signed Input [] Signed Output

Forced Rows Number

Forced Input Scale Forced Output Scale

[] []

Forced Input Units Forced Output Units

| |

‘Input Function’ properties can be described like following:

- ‘Address Input Register/Argument’ : This is the register containing function
address when routine is called. It is always a generic register (erased and rewritten for
generic puprose). Here ‘R36’ is one of them for this strategy. It could also be an
Argument, when routine uses arguments and in this case is should be written ‘Ar01’ to
‘Ar99’, you will understand why.

- ‘Input Register/Argument’ : This is the register containing the Input
value of the function, still a generic one. It is interesting for SAD 806x for tracing source
of data for function, as far for proper recognizing. Argument can be used too.

- ‘Output Register’ : This is the register that will receive the
Output result of the function, still a generic one. SAD 806x uses it to follow data, to
detect scalers, as far for proper recognizing.

- ‘Byte’ : Checked, it will define if the provided function is a
byte one. Otherwise, it will be a word one.

- ‘Signed Input’ : Checked, it will define if the provided function has a
signed input. Otherwise, it will have an unsigned one.

- ‘Signed Output’ : Checked, it will define if the provided function has a
signed output. Otherwise, it will have an unsigned one.

- ‘Forced Rows Number’ : Empty, SAD 806x will detect rows number, filled,
this rows number will be used, this is the case when rows number is hard coded in
routine.

- ‘Forced Input Scale’ : When filled, it will apply to all related functions.

- ‘Forced Output Scale’ : When filled, it will apply to all related functions.

- ‘Forced Input Units’ : When filled, it will apply to all related functions.

SAD 8061 — 8065 / SAD806x

- ‘Forced Output Units’ : When filled, it will apply to all related functions.

As reminder, a routine with only 1 ‘Input Function’, with or without ‘Input Arguments’, will be
managed as a Function routine, to detect functions.

Add / Update

‘Add / Update’ button permits to validate creation or update. Do not forget it between inputs or
before closing ‘Advanced Properties’ form.

SAD 8061 — 8065 / SAD806x

Input Argument Input Structure Input Table Input Function Input Scalar

Address Input Register/Argument Columns Number Register/Argument
[B< | R38

Columns Input Register/Argument Rows Input Register/Argument Output Register

IR | [R36 R3e |

Word [] Signed

Forced Columns Number Forced Rows Number Forced Scale
Forced Columns Units Forced Rows Units Forced Cells Units

‘Input Table’ properties can be described like following:

- ‘Address Input Register/Argument’ : This is the register containing table address
when routine is called. It is always a generic register (erased and rewritten for generic
puprose). Here ‘R3¢’ is one of them for this strategy. It could also be an Argument, when
routine uses arguments and in this case is should be written ‘Ar01’ to ‘Ar99’, you will
understand why.

- ‘Columns Number Register/Argument’ : This is the register containing the columns
number of the table, still a generic one. It is required for SAD 806x for table recognizing.
Argument can be used too.

- ‘Columns Input Register/Argument’ : This is the register containing the column
Input value of the table, still a generic one. It is interesting for SAD 806x for tracing
source of data to find scaling functions, as far as for proper recognizing. Argument can be
used too.

- ‘Rows Input Register/Argument’ : This is the register containing the row Input
value of the table, still a generic one. It is interesting for SAD 806x for tracing source of
data to find scaling functions, as far as for proper recognizing. Argument can be used too.

- 'Output Register’ : This is the register that will receive the
Output result of the table, still a generic one. SAD 806x uses it to follow data, as far as for
proper recognizing.

- ‘Word’ : Checked, it will define if the provided table
is a word one. Otherwise, it will be a byte one.

- ‘Signed’ : Checked, it will define if the provided table
has a signed output. Otherwise, it will have an unsigned one.

- ‘Forced Columns Number’

SAD 8061 — 8065 / SAD806x

: Empty, SAD 806x will search for columns number,

filled, this columns number will be used, this is the case when columns number is hard

coded in routine.

- ‘Forced Rows Number’

: Empty, SAD 806x will detect rows number, filled,

this rows number will be used, this is the case when rows number is hard coded in

routine.
- ‘Forced Scale’
- ‘Forced Columns Units’
- ‘Forced Rows Units’

- ‘Forced Cells Units’

: When filled, it will apply to all related tables.
: When filled, it will apply to all related tables.
: When filled, it will apply to all related tables.

: When filled, it will apply to all related tables.

As reminder, a routine with only 1 ‘Input Table’, with or without ‘Input Arguments’, will be managed

as a Table routine, to detect tables.

SAD 8061 — 8065 / SAD806x

.................................

Input Argument Input Structure Input Table Input Function : Input Scalar

Address Input Register/Argument [] Signed

|

Forced Units

‘ [Byte

Forced Scale

[1]

‘Input Scalar’ properties can be described like following:

‘Address Input Register/Argument’ : This is the register containing scalar address
when routine is called. It is always a generic register (erased and rewritten for generic
puprose). It could also be an Argument, when routine uses arguments and in this case is
should be written ‘Ar01’ to ‘Ar99’, you will understand why.

‘Signed’ : Checked, it will define if the provided scalar
has a signed output. Otherwise, it will have an unsigned one.

‘Byte’ : Checked, it will define if the provided scalar
is a byte one. Otherwise, it will be a word one.

‘Forced Units’ : When filled, it will apply to all related
scalars.

‘Forced Scale’ : When filled, it will apply to all related

scalars.

SAD 8061 — 8065 / SAD806x

Address Input Register/Argument Number Register/Argument 4 ; {.'-
Forced Number

[|

Structure

‘Input Structure’ properties can be described like following:

‘Address Input Register/Argument’ : This is the register containing structure
address when routine is called. It is always a generic register (erased and rewritten for
generic puprose). It could also be an Argument, when routine uses arguments and in this
case is should be written ‘Ar01’ to ‘Ar99’, you will understand why.

- ‘Number Register/Argument’ : This is the register containing the structure
repeat number, still a generic one. It is for SAD 806x for structure recognizing. Argument
can be used too.

- ‘Forced Number’ : This is the value for the structure repeat
number. It can be hard coded to prevent SAD 806x to detect it. Then it overrides previous
‘Number Register/Argument’ value.

- ‘Structure’ : This is the structure definition, that will be
used. SAD 806x does not attach a structure definition to a routine automatically, so it is
required here.

- ‘Yellow Smiley’ image : With mouse over this image, you have some
information about, how to write the structure definition. When clicking on it, you have a
window with the same information. It is a good starting point.

SAD 8061 — 8065 / SAD806x

{8 Advanced Routine - O X
5ub0102] D4clc
=- Routine Elements Detection Input Argument Input Structure Input Table Input Function Input Scalar
= Input Arguments
1-A01 Matching Code Position Encryption
:2;' Téé A1 1 Standard v
4-AD4
Input Structures Word Output as Pointer
Input Tables
Input Functions
Input Scalars
Add / Update

‘Input Argument’ properties can be described like following:

- 'Position’ : This is the position of the argument for the call. First one is
1, second one 2 and so on...

- ‘Word’ : Checked, argument will be a 2 bytes one.

- ‘Output as Pointer’ : On autodetection default is true. It permits to be managed
as a pointer, which gives a different text output.

- 'Matching Code’ : This is the generated code, to be reused in other inputs, it is
read only and based on ‘Position’. Now, you understand ‘Ar01’ to ‘Ar99’.

Encryption

Standard v|

Unknown

Standard

Mode0

Mode1

Mode2

Mode3

Moded

Mode4 Struct

- ‘Encryption’ : Sometimes arguments are provided to be used directly,

without operation on their value, sometimes not, arguments are encrypted in this case.
‘Unknown’ : With ‘Unknown’ Encryption, SAD 806x tries to detect it. If it is not
possible, it will be managed as ‘Standard’.
‘Standard’ : It is the case when argument is not encrypted.
‘Mode0’ : This mode is not for an encryption, but to set that parameter is a

calibration element, which is not using an RBase.

SAD 8061 — 8065 / SAD806x

‘Model’ : Is not managed for now and will be processed as ‘Standard’,
because | have never seen it until now.
‘Mode2’ : Is not managed for now and will be processed as ‘Standard’,
because | have never seen it until now.
‘Mode3’ : Just an example.
f03a (3a,£f0) => F[O+((f - 8) * 10) / 8] => F[0+70/8] => F[O0+E] =>
FE + 03a
010c (0c,01) => Not compatible => [10c]
‘Moded’ : Just an example.
44,22 => 2244 => 2 + 244 => f2(£(0+2)) + 244 => RBase f2 + 244
44,32 => 3244 => 3 + 244 => f2(£(0+3-1)) + 1244 => RBase f2 + 1244
‘Mode4Struct’ : Extension of ‘Mode4’, to provide address in structure .
44,22 => 2244 => [2244],[2246] => Values to read 1in a structure
[2244] => 47,26 => 2647 => 2 4+ 0647 => f2(£(0+2)) + 647 =>
RBase f2 + 647
[2246] => 12,01 => [112] => Input Register

‘Encryption’ is correctly autodetected, normally no need to manage it.

Do not forget that arguments can be reused, with ‘ArXX’ in other inputs.

‘Routines’ category menu:

No specificity at all.

SAD 8061 — 8065 / SAD806x

‘Routine’ element menu:

-Sub Display

- Sub)

- Sub) New

- Sub Rename

- Sub)

- Sub Copy

- Sub Copy (signature)

~Sub Paste

- Sub)

- Sub! Paste and Overwrite

- Sub) _ .

- Sub Create Duplicate
Set as Main

g Search Operations
Skip
Reset/Remove

==

SAD 8061 — 8065 / SAD806x

Even if it not possible to ‘Copy (Xdf)’" a routine, because this type of object is not managed through
TunerPro, another option has been added for routines, it is ‘Copy (signature)’.

Signature is not in another tool, it can be a part for SAD 806x definition. This is the ‘Routines

Signatures’ category, which will be seen later on.

Signature of a routine is the code, which will be common for all strategies, for the same routine or
type of routine.

‘Copy (signature)’ permits to paste on ‘Routines Signatures’, an exact copy of the related routine,
including its advanced parameters and in addition, the hexadecimal code at the beginning of the

routine, as base of the signature that will have to be reviewed.

When using this ‘Copy (signature)’ you will understand its interest for working on signatures.

SAD 8061 — 8065 / SAD806x

Operations:

An operation is an instruction + its parameters (if available) + its arguments (if available).

Routines are a set of operations.

For sure an operation has an address in the binary, this is in fact the only thing that is interesting in
this part.

After disassembly, unlike routines, operations are not loaded in SAD 806x elements tree. This is
because of the huge number of operations which are detected and because nothing specific can be
setup on them, except basic information.

But it can be interesting to declare existing operations, to set their labels or comments and to declare
new operations, when they were missing.

If you see a block of undisassembled code, it can be a structure or code. On my side, | create a basic
routine at this address and after redisassembly, | check if disassembly has be well managed around
this. So no need to create operation here. But sometimes, you can see a skip or goto, original or
patched, that will ignore 1 or 2 operations, and there, it interesting to see what was ignored, there |
will create the missing operation, because, SAD 806x, which follows the code, can not arrive at this
place, except if we declare to do it.

SAD 8061 — 8065 / SAD806x

‘Operation Properties’ part is the following one:

4 SAD 8061-8065 (KBAN7H4.BIN / KBAN7(H4)) B u x

File Disassembly Output Tools ?

Properties INew Blement]3 | 2000 |

#l- Reserved (185) b
#- Tables (121) 8065 Binary - 221184 Bytes
#)- Functions (497) KBANT{H4) Strategy
+- Scalars (2342)
- Structures (207)
#- Routines (1412)
#]- Registers (270) Banks :
Other Addresses (0) 0 00000 => DAEfE

~ 0e000 => 19££ff
Routines Signatures (0)

28000 => 3SEEE
#|- Elements Signatures (4) 1a000 => 27££f

KBANTH4 sbix

w @

e e m Y .
| Properties : |
I Label Short Label 1 £0 (20€0), £2 (34b4)
} [New Bement O sk Ope0001 ! £ (anany, £ (snae)
1 £fc (€30e), fe (89€a)
: :
:Cnmmenls Output Comments [_] :
: ! Disassembly done
1 4 seconds.
| 1
|
Validate Cancel
Generic properties are like following:
‘Label’ : Auto generated by default, based on auto numbering or based on known
addresses. It will be visible at the operation address in the output, like a header.
‘Short Label’ : Auto generated by default, based on auto numbering or based on known
addresses. It will be not be visible in the output.
‘Skip’ : When skipped, user defined definition for operation is ignored at
disassembly. Auto detection comes back to override the defined operation.
‘Comments’ : Empty by default. It will be visible at the element address in the output only

if ‘Output Comments’ is checked.

‘Operations’ category menu:

No specificity at all.

SAD 8061 — 8065 / SAD806x

‘Operation’ element menu:

No specificity at all.

SAD 8061 — 8065 / SAD806x

SAD 8061 — 8065 / SAD806x

Registers:

A register is an EEC memory address, not related with rom, used to share data or information inside
program. Main part of registers have one unique purpose in our case, which makes them interesting
to identify. The other part are generic or temporary registers (erased and rewritten), which have to
be managed but, only to find the other ones.

| will not detail for now the related addresses, but globally on EECV addresses start at 0x0000 to go
to Ox1FFF and another part can be used from 0xFO0O to OxFFFF.

A part of these addresses are reserved and detected like this. But that is the other part which will
help us to understand disassembly.

After disassembly, like routines, only a small part of detected registers are loaded in SAD 806x
elements tree. Functions inputs, outputs, like Tables inputs, outputs ar kept to be inserted in
registers list.

SAD 8061 — 8065 / SAD806x

‘Register Properties’ part is the following one:

4 SAD 8061-8065 (KBAN7H4.BIN / KBAN7(H4)) - O X
File Disassembly Output Tools ?
R95 A o [R T 10 |
R97 KBANTH4BIN
R99 8065 Binary - 221184 Bytes
-R%a KBANT({H4) Strategy
R KBANTHA séix
Rdc
Rb4
Rb3%
-Rd1 Banks :
Rd9 0 00000 => OdEEE

0e000 => 1S9£ff
28000 => 3ISELE
1a000 => 27£££

w @ e

RBases :
£0 (20€0), £2 (24b4)
£4 (272a), f€ (3cca)
£8 (48d8), fa (5bBE)
fc (€30e), fe (BS€a)

Register Address
] O skie Bt Flags 10

Bit Flags

Comments

Disassembly done
4 seconds

-
1
1
1
1
1
1
1
Byte Dedicated Label Word Dedicated Label 1
1
1
1
1
1
1
-

-[2a2) v Validate Cancel

Generic properties are like following:

‘Label’ : By default it is what will appear in output. It will be visible each time register
is used in output, except if specific ‘Byte Dedicated Label’ or ‘Word Dedicated Label’ are defined.

‘Register Address’ : Register are working a bit differently, it is not possible to update their
address on the top of the screen and they have no bank, but a specific code. So you have to set it or
update it directly in this place.

As | have described, range for addresses is checked, based on what was described previously, but
another use can be done here for addresses, you can use this type of setup : ‘XX+YY’, for example
For example [Ra3+12] has to use address a3+12. ‘Ra3’ is some kind of constant (RConst) and ‘12’ is its
gap to the defined register. Gap can have all values inside registers addresses range.

‘Skip’ : When skipped, user defined definition for register is ignored at disassembly.
Auto detection comes back to override the defined register.

‘Comments’ : Empty by default. It will be visible only in registers lists, if option ‘Register
list output’ was chosen in definition global properties.

Specific properties are like following:

‘Bit Flags’ : Exactly the same setup than for scalars, but there, it permits to manage bit
flags and displays their labels in output instead of ‘Label’, ‘Byte Dedicated Label’ or ‘Word Dedicated
Label’, when register is used in bit operations.

‘Byte Dedicated Label’ : In some strategies, registers have not the same meaning when they are
used in byte operations versus word operations. This is why additional labels were added. If ‘Byte
Dedicated Label’ is set, it will be used in output for byte operations, otherwise ‘Label’ will be used.

SAD 8061 — 8065 / SAD806x

‘Word Dedicated Label’: If it is set, it will be used in output for word operations, otherwise ‘Label’

will be used.

SAD 8061 — 8065 / SAD806x

‘Element Information’ for Register: \

4 SAD 8061-8065 (KBAN7H4.BIN / KBAN7(H4)) - O X
File Disassembly Output Tools ?
Properties ~ I ROF \]R | f |
[#- Reserved (185) KBANTHABIN
[#]- Tables (121) 8065 Binary - 221184 Bytes
[#- Functions (497) KBANT{H4) Strategy
(- Scalars (2342) KBANTHA sbx
- Structures (207)
[#- Routines (1412)
Operations (0)
[=)- Registers (270) Banks :
RO5 0 00000 => OAEEE
1 0e000 => 1SEEE
RO0S 8 28000 => ISELE
ROF $ 1a000 => 27ELE
R13
-[R26+129¢] === 1
[R28+12ac] Pro H ;
1 d RBases :
[R34+7ca] 1/Inpt for function 2120 A | £0 (20€0), £2 (24b4)
R61 1 Input for function 21d6 | £4 (2722), £€ (3cca)
R83 i et forfunction 223 | R e T
R85 Input for function 25¢8 fc (€30e), fe (B9€a)
Rg7 1 Input for function 2acc !
1Input for function 2aed :
R& 1|Input for function 2b04 1
-R95 1|Input for function 200 1
R97 1{Input for function 31d8 [
RS9 I Input for function 31d8 umssemmy done.
RSa Input for function 31d8 seconds.
Hinput for function 31d8 !
R% 1|input for function 320 1
-R% 1{Input for function 3322 !
Rb4 1|Input for function 3452 R
RbS 1 Input for function 34a4 v |
o V| drotforfunging Whe o o e o = — = == —————

Registers possess an additional ‘Element Information’ tab too, which includes additional details
grabbed during disassembly and interessant to be known.

In this case, we discover, register is used many times as input for functions, no surprise here, ROf is
RPM, it can be seen quickly by looking at these functions. If a register is used directly as input for
tables, you can be sure it is a dedicated scaler register. For sure, when labels are redefined, elements
appear translated here.

‘Registers’ category menu:

No specificity at all.

SAD 8061 — 8065 / SAD806x

‘Register’ element menu:

No specificity at all.

SAD 8061 — 8065 / SAD806x

SAD 8061 — 8065 / SAD806x

Other addresses:

Sometimes, we know that something is present at an address, but we do not know exactly,
what it is at the moment, or we want to keep trace of an address without entering more details now,
the other address is the perfect place to do it.

It is massively used after a SAD directive file import, for unrecognized addresses or elements.

At disassembly, when SAD 806x detect something, element, operation and when it was not properly
defined, it looks at this place, to search for and existing address and to enrich its element.

Definition of this type of thing, is really limited, but totally necessary for some cases.

SAD 8061 — 8065 / SAD806x

‘Other Addresses’ part is the following one: \

8 SAD 8061-8065 (KBANTH4.BIN / KBAN7 (H4)) — O X
File Disassembly Output Tools ?
Properties INew Blement \]B | 2000 |
[#- Reserved (185) KBANTHABIN
[#]- Tables (121) 8065 Binary - 221184 Bytes
[#- Functions (497) KBANT{H4) Strategy
[#)- Scalars (2342) KBANTHA St
- Structures (207)
[#- Routines (1412)
Operations (0)
[+)- Registers (270) Banks :
Do T
Routines Signatures (0) s 2:000 ; as£EE
[#)- Elements Signatures (4) $ 1a000 => 27E£E
T VI
1 Properties : L i
: Label 1 ;t:e:m-)em. £2 (24b4)
! Ose 1 ===
1 1 £c (€20e), fe (8%€a)
1 1
1 1
1 Comments Output Comments [_] :
: 1 Disassembly done.
1 1 S seconds.
1 1
1
Validate Cancel
Generic properties are like following:
‘Label’ : It will appear in output at specified address, if nothing else was declared.
‘Skip’ : When skipped, it is ignored at disassembly.
‘Comments’ . It will appear in output at specified address, if nothing else was declared and

if ‘Output Comments’ is checked.

‘Other Addresses’ category menu:

No specificity at all.

SAD 8061 — 8065 / SAD806x

‘Other Address’ element menu:

No specificity at all.

SAD 8061 — 8065 / SAD806x

SAD 8061 — 8065 / SAD806x

Routines Signatures:

‘Routines Signatures’ part is the most complicated part in this application, because it is
related with a definition and because it should be possible to duplicate it on others.

Purpose of a routine signature, is to detect a routine on disassembly, based on some kind of
hexadecimal signature and to give it a name and a meaning. So it should be able based on a well
written signature to automatically create a routine, in the ‘Routines’ part, with a well-defined and
pre-defined ‘Label’, ‘Short Label’ and ‘Comments’.

Because a routine can be advanced, like it was seen in ‘Routines’ part, detected routine should get all
required advanced parameters directly, so it should be possible to pre-define them, even if it should
stay an option.

But why not in this case, being able to attach elements to this routine, too, because this routine can
contain use of elements and because it is strange to detect a known routine and to let its elements
unknown. So it should be possible to pre-define elements inside this routine.

‘Routines Signatures’ part shall be able to do this, but as you will understand, creating a proper
signature, which could be shared between different definitions and different technologies, is not so
easy. In a perfect world, with the perfect list of ‘Routines Signatures’, a definition template could be
able to disassemble everything properly without any additional human action. Just send me this
template when you have finished it ;)

SAD 8061 — 8065 / SAD806x

‘Routines Signature’ part is the following one: \

8 SAD 8061-8065 (KBAN7H4.BIN / KBAN7(H4)) — O X
File Disassembly Output Tools ?
Properties New Element \]S | |
+- Reserved (185) KBANTHABIN
+]- Tables (121) 8065 Binary - 221184 Bytes
+)- Functions (497) KBANT{H4) Strategy
- Scalars (2342) KBANTHA sbix
+)- Structures (207)
#- Routines (1412)
Operations (0)
+- Registers (270) Banks :
Other Addresses (0) g goggg = 22:2
Routines Signatures (0) 8 3;000 ; 3SEEE
#)- Elements Signatures (4) $ 1a000 => 27E£E
I S -
Properties Information ! RBases :
Label Short Label I £0 12():‘0\, £2 (24b4)
New Element O se Advanced ' 5 o &
Slgnalure .‘- Mvm Propenies 1 £fc (€30e), fe (89€a)
1
1
1
I .
Comments Output Comments [] : ?f:z:’g:"y T
1
1
S T ! e
Validate Cancel
Generic properties are like following:
‘Label’ : Auto detected routine, will be created with this ‘Label’. Output will also
work like for a classical routine.
‘Short Label’ : Auto detected routine, will be created with this ‘Short Label’. Output will
also work like for a classical routine.
‘Skip’ : When skipped, signature will not be searched for.
‘Comments’ : Auto detected routine, will be created with this ‘Comments’. Output will

also work like for a classical routine, when ‘Output Comments’ duplicated on auto detected routine
too, is checked.

Routines signature specific properties are like following:

‘Advanced’ : Checked, it indicates that auto detected routine will be an advanced
one, that it is related with special scalars or structures, functions or tables, or that it basically has
arguments when called. It is a read only information, which can be managed only with ‘Advanced
Properties’ button.

‘Signature’ : This is the hexadecimal signature, which will permit to detect a
routine. It will be described later on. Code written here should be unique in binary, to permit to
detect only one routine and not another number of identical routines with same code.

‘Yellow Smiley’ image : With mouse over this image, you have some information about,
how to write the signature. When clicking on it, you have a window with the same information. It is a
good starting point.

SAD 8061 — 8065 / SAD806x

SAD 8061-8065 X

Routine Signature Options

Format:

- Bytes (00 - FF), Spaces, Comma ', and carrier returns can be
used

- Dot "." means one unknown half byte, ** means 0 to 100
unknown half bytes

- Parameters start and end with '#’, one Parameter per Byte
- For proper address matching, signature should always
provide complete bytes

Principle:

- Signature matching is based on string regular expression
comparison

- ab,cd, ef will be searched and found in COFFCEABCDEFOOFF
Using Parameters:

- Parameters will be reused for routine or internal elements
generation

- Predefined fields can reuse them like this : #01# or
#01#202# or #01#+202#

Purpose:

- Signature has to properly generate the related routine

SAD 8061 — 8065 / SAD806x

‘Routines Signature’ advanced properties:

By using button ‘Advanced Properties’, like for routines, it permits to access to the related form.
This form is composed, with the following elements:

- Extended signature text box

- Related elements properties
- ‘Yellow Smiley’ image

- ‘Add / Update’ button

: to fill in Signature in this place.

- Signature Elements Detection List : list of all related elements, which will be created on
detected routine or associated with it.

: properties for all related properties.
: still the same meaning.

: to validate element creation / update.

Advlanced Signature

<

y Input Arguments
Input Structures
Input Tables
Input Functions
Input Scalars
Intemal Structures
Intemal Tables
Intemal Functions
Intemal Scalars

| RN fnplf Sucte Tnput Table Inpu Funclion . Inpid Scalar Infemal Stnicture Intemal Tabe lnTem-aI_Fun_c s

1
| Matching Code Position Encryption

Standard ~
] Word [Output as Pointer

Add / Update

Just before describing possible elements which can be added, | will just describe an interesting
specificity in signature. An example is better. This is what will output after disassembly:

blfd: f2

b209: £3
b20a: f£0

O OO GO 00 o0 00 G0 O

blf5: al,00,24,2a
b1f9: c3,da,b0,2a
blfd: c3,da,’70,2a
b201: c3,da, 56,00
b205: c3,da, 76,00

pushp push (PSW)
1dw R2a, 2400 RZa = 2400;
stw [Rda+50],R2a [6d0] = R2a:
stw [Rda+70],R2a [6£0] = R2a:
stw [Rda+56],0 [6de] = 0
stw [Rda+76],0 [6f6] = O
popp pop (PSW) ;
ret return;

Hexadecimal code for this part is the following one :

F2A100242AC3DA502AC3DA702AC3DA5600C3DA7600F3F0

SAD 8061 — 8065 / SAD806x

Not really usable, so yes like this it is better:

f2
al, 00,24, 2a
c3,da, 50, 2a
c3,da, 70, 2a
c3,da, 56,00
c3,da, 76,00
£3
fo

If you remember well, this code and everything in fact, after basic disassembly, can come from the
auto detected routine, with the ‘Copy (signature)’ from the related routine menu.

Just by using this code in signature | should be able to identify this routine, but only in that binary,
but | want more, | want to create a scalar, at address ‘0x2400’, and | want to identify 2 registers [6d0]
and [6f0], to be reused in routine definition.

For this | will update the signature:

f2

al, #02#, #01#, #03+#
c3,#06#, #0044, #03+#
c3,#06#, #054#, #03+#
c3,#06#,..,00
c3,#06#,..,00

£3

f0

H#XX# things are ‘Signature parameters’, one for each byte, they can have any value and ‘..’ things are
like one byte that can have any value too.

With that, my signature becomes much more generic (I hope not too much, this is the danger) and it
can probably being reused in other strategies.

‘Signature parameters’ can now be reused in signature elements definition.

So my scalar address 0x2400 will be ‘#01##024#’.

Because SAD806x seems to know value for ‘Rda’, [6d0] will be ‘#06#+#044#" and [6f0] will be
‘HOGH+HOSH .

Complicated, yes, but necessary.

SAD 8061 — 8065 / SAD806x

Like routines, added input elements can be like following:

- Input Argument

i Input Structure Input Table Input Function Input Scalar Intemal Structure Intemal Table Intemal Func ¢ | *

Matching Code Position Encryption
[] [] Standard v
] word [] Output as Pointer

Nothing different here compared to the setup on ‘Routines’ and now real way to reuse
‘Signature parameters’ in this place.

- Input Structure

ilnnul Table Input Function Input Scalar Intemal Structure Intemal Table Intemal Func * | *

Address Input Register/Argument Number Register/Argument { - 3
|) m
Forced Number

[]

Structure

Nothing different here compared to the setup on ‘Routines’, using Argument (‘ArXX’) is still
possible, but in addition, ‘Signature parameters’ can be used to fill in automatically ‘Address Input
Register’, ‘Number Register’ or ‘Forced Number’.

- Input Table

Input Argument Input Structure Input Table Input Function Input Scalar Intemal Structure Intemal Table Intemal Func * | *

Address Input Register/Argument Columns Number Register/Argument
Columns Input Register/Argument Rows Input Register/Argument Output Register

I | | | I |

[J Word [Signed

Forced Columns Number Forced Rows Number Forced Scale
Forced Columns Units Forced Rows Units Forced Cells Units

Nothing different here compared to the setup on ‘Routines’, using Argument (‘ArXX’) is still
possible, but in additon, ‘Signature parameters’ can be used to fill in automatically ‘Address Input

SAD 8061 — 8065 / SAD806x

Register’, ‘Columns Number Register’, ‘Columns Input Register’, ‘Rows Input Register’, ‘Output
Register’, ‘Forced Columns Number’ or ‘Forced Rows Number’.

- Input Function

Input Scalar Intemal Structure Intemal Table Intemal Func * | *

Input Argument Input Structure Input Table

Address Input Register/Argument Input Register/Angument Output Register

| | | | |

[] Byte [Signed Input [J Signed Output

Forced Rows Number

[]

Forced Input Scale Forced Output Scale

I [1

Forced Input Units Forced Output Units

Nothing different here compared to the setup on ‘Routines’, using Argument (‘ArXX’) is still
possible, but in addition, ‘Signature parameters’ can be used to fill in automatically ‘Address Input
Register’, ‘Input Register’, ‘Output Register’ and ‘Forced Rows Number’.

- Input Scalar
Input Argument Input Structure Input Table Input Function

Address Input Register/Argument [signed
I | Obye

Forced Scale

| | []

Forced Units

Nothing different here compared to the setup on ‘Routines’, using Argument (‘ArXX’) is still
possible, but in addition, ‘Signature parameters’ can be used to fill in automatically ‘Address Input

Register’.

SAD 8061 — 8065 / SAD806x

But unlike routines, it is now possible to setup directly calibration elements, which will be directly
created where it is appropriated, when the signature is detected.

These calibration elements, will be generated based on this setup, so their setup will be the same

than for the related category:

- Internal Structure

Intemal Func * | *

Input Argument Input Structure Input Table Input Function Input Scalar

Address Bank -a
e

| S — &

Label Short Label Number

| | O

Structure

Comments Output Comments [_]

Nothing different here compared to the setup on ‘Structures’, but ‘Signature parameters’ can
be used to fill in automatically ‘Address’, ‘Number’ and the new property ‘Bank’. On Signature
detection, it will generate automatically the defined structure, in the current definition.

- Internal Table

Input Argument Input Structure Input Table Input Function Input Scalar Intemal Structure Intemal Table |ntemal Func * | *

Address Bank

[| []

Label Short Label Columns Number Rows Number

| | l | [o | |
[] signed Scale
A

Columns Units Rows Units Cells Units

| | | |
Comments Output Comments []

Nothing different here compared to the setup on ‘Tables’, but ‘Signature parameters’ can be
used to fill in automatically ‘Address’, ‘Columns Number’, ‘Rows Number’ and the new property
‘Bank’. On Signature detection, it will generate automatically the defined table, in the current

definition.

- Internal Function

SAD 8061 — 8065 / SAD806x

Input Structure Input Table Input Function Input Scalar Intemal Structure Intemal Table | | 1} Intemal Sci ¢ | * |

Address Bank

I |]

Label Short Label Rows Number
I | 0

O Ssigned Input Input Scale [] Byte [signed Output Output Scale
Input Units Output Units

I | I |
Comments Output Comments []

Nothing different here compared to the setup on ‘Functions’, but ‘Signature parameters’ can
be used to fill in automatically ‘Address’, ‘Rows Number’ and the new property ‘Bank’. On Signature
detection, it will generate automatically the defined function, in the current definition.

- Internal Scalar

Input Table Input Function Input Scalar Intemal Structure Intemal Table Intemal Function :

Address Parameters Bit Flags Bank
I | Bit Flags I
Label Units
Short Label Scale
Osowt [] Doe
Comments Output Comments [_]

Nothing different here compared to the setup on ‘Scalars’, but ‘Signature parameters’ can be
used to fill in automatically ‘Address Parameters’ and the new property ‘Bank’. On Signature
detection, it will generate automatically the defined scalar, in the current definition.

SAD 8061 — 8065 / SAD806x

‘Element Information’ for ‘Routines Signatures’:

4 SAD 8061-8065 (KBAN7H4.BIN / KBAN7(H4)) -] X
File Disassembly Output Tools ?
Properties INew Blement]S | |
[Reserved (185) KBANTHABIN
Tables (0) 8065 Binary - 221184 Bytes
- Functions (0} KBANT{H4) Strategy
[#- Scalars (8) KBANTHA sbx
Structures (0)
Routines (0)
Operations (0)
-Registers (0) Banks :
Other Addresses (0) o 00000 => Odfff
~ y 1 0e000 => 19££ff
Routines Signatures (0) 8 28000 => ISEEE
[#- Blements Signatures (4) $ 1a000 => 27EEE

RBases :

£0 (20€0), £2 (24b4)
£4 (272a), f€ (3cca)
£8 (48d8), fa (5bBE)
fc (€30e), fe (BS€a)

fFheckSum is wvalid
CheckSum cOde
Base Address 000

kC Exe Time 005d
[evels Number]
[faisbs Numbex 1

‘Routines Signatures’ possess an additional ‘Element Information’ tab too, which includes additional
details grabbed during disassembly and interessant to be known.

In this case, it permits to see if signature was detected one time or more and if it was one time,
which routine was generated by it in definition.

Writing a signature:

Starting from the basis.

SAD 8061-8065 X

0 Routine Signature Options

Format:

- Bytes (00 - FF), Spaces, Comma °," and carrier returns can be
used

- Dot ." means one unknown half byte, '*' means 0 to 100
unknown half bytes

- Parameters start and end with '#', one Parameter per Byte

- For proper address matching, signature should always
provide complete bytes

Principle:

- Signature matching is based on string regular expression
comparison

- ab, cd, ef will be searched and found in 0OFFCEABCDEFOOFF
Using Parameters:

- Parameters will be reused for routine or internal elements
generation

- Predefined fields can reuse them like this : #01# or
#01#202# or #01#+202#

Purpose:

- Signature has to properly generate the related routine

SAD 8061 — 8065 / SAD806x

As you can see, signature detection is based on a regular expression search, therefore signature and
compared binary code should be managed as text string. For sure the best way to do it is through

hexadecimal code.

Signature will also mainly be composed with bytes written in hexadecimal from 00 to FF. To have a
code more clear to read or to understand, spaces ‘ ‘, commas ‘,” and carrier returns can be inserted

between bytes, they will be removed on comparison.

Like for the previous example,

8 blfd: f2 pushp

8 blfL: al,00,24,2a 1dw R2a, 2400

8 blf9: ¢3,da,b0,2a stw [Rda+50],R2a
8 blfd: <3,da,70,2a stw [Rda+70],R2a
8 b201: c3,da, 56,00 stw [Rda+56],0

8 b205: ¢3,da, 76,00 stw [Rda+76],0

8 b209: £3 Poprp

8 b20a: 10 ret

a signature, which will match at 100% here, is the whole code itself.

f2
al,00,24,2a
c3,da, 50, 2a
c3,da,70,2a
c3,da, 56,00
c3,da, 76,00
£3
fo

push (PSW) ;
R2a = 2400;
[6d0] = R2a;
[6£0] = R2a;
[ede] 0;
[efe] = 0;
pop (PSW)
return;

SAD 8061 — 8065 / SAD806x

But it has no real interest, because it is not a generic code between strategies, 2400 which could be
an address, can be different in another strategy and registers will certainly be at different addresses.
| am not talking about instructions, which can change or other new instructions which could be
added, for bank change or other things.

So the first thing, is to be able to use generic values. Double dot ‘.." can also be used to replace a
complete byte. ‘24’ can be replaced with ‘... But if you are sure, it will always start with ‘2’, you can
use 2." to replace 24’ too. Single dot ‘. means any character 1 time. Just be sure, your complete
signature has the right numbers of half bytes, at the end. The following signature will match here,
but probably with other routines too, no ?

f2

al,..,2.,..
C3, e nyenyen
C3, enyenyen

c3,..,..,00
c3,..,..,00
3
fo

The second thing is to be able to ignore some values. For example, you can imagine that in some
strategies, [6d6] and [6f6] are not reset (set to 0), like here, and the star “*’ will help you, it means 0
to 100 unknown half bytes. The following signature will match here, even if operations at ‘8 b201’
and ‘8 b205’ are not existing, but it becomes a bit too much generic, no ?

f2
al,..,2.,..
C3, enygangon
C3, 44,

*

£3

f0

As it has already been described, signatures parameters can also be matched with values in binary to
be reused in elements. | will just remember you the syntax, inside the signature, still with one
parameter per byte, ‘#XX# with XX’ as a decimal number. When matching, it will act exactly like if
the double dot “..” was used a single time.

f2

al, #0224, #01#, #034
c3,#06#, #044, #03+#
c3,#06#, #054#, #03#
c3,#06#,..,00
c3,#06#,..,00

3

fo

f2
al, #02#, #01#, #03#
c3,#006#, #04%, ..

c3,..,#05%, ..
c3,..,..,00
C3;,44,..,00
3

£0

SAD 8061 — 8065 / SAD806x

Both signatures will match for sure and all parameters will be filled with value, so it is not required
when you have the same value in code, to reuse the parameter another time, ‘#06#’ or ‘#034#’ in this
case, but it permits to get a closer matching. The second signature could match with more code,
which is not expected.

If you still remember well, this code and everything in fact, after basic disassembly, can come from
the auto detected routine, with the ‘Copy (signature)’ from the related routine menu.

Another interesting tool which will be described later on, can be found in main menu ‘Tools/Search
Signature’. It permits to directly search in binary a provided signature and in fact, to validate if the
written one is working or not.

‘Routines Signatures’ category menu:

No specificity at all.

SAD 8061 — 8065 / SAD806x

‘Routines Signature’ element menu:

No specificity at all.

SAD 8061 — 8065 / SAD806x

SAD 8061 — 8065 / SAD806x

Elements Signatures:

‘Elements Signatures’ part is a bit simpler to use than ‘Routines Signatures’. Like its name
says, it permits to automatically detect calibration elements and to create directly their complete
definition when signature is detected on disassembly. But for sure, it is not the signature of the
calibration element itself, it is the signature of the code that is using it.

It is still based on some kind of hexadecimal signature, with same principle than for ‘Routines
Signatures’, which still remains to be unique for binary and if possible for other strategies, because
the goal is to duplicate them on definition templates, to better automatize disassembly.

The ‘Routines’, ‘Copy (signature)’ is not working here, it is dedicated to ‘Routines Signatures’, but it is
still possible to validate a signature through ‘Tools/Search Signature’.

Some elements are directly hardcoded in SAD 806x and will be added to new definition, for now
‘MAF Transfer’.

This hardcoded signatures can not be removed or updated, they are marked as ‘Forced’. But it is a
good base to create new ones.

So setup for an ‘Element Signature’, is basically, the signature itself and the definition of one
calibration element.

SAD 8061 — 8065 / SAD806x

‘Element Signature’ part is the following one:

4 SAD 8061-8065 (KBAN7H4.BIN / KBAN7(H4)) B u x

File Disassembly Output Tools ?

Properties INew Blement]S | |

Reserved (185) e

Tables (121) 8085 Binary - 221184 Bytes
- Functions (497) KBANT(H4) Strategy

Scalars (2342)

J- Structures (207)
- Routines (1412)
Operations (0)

- Registers (270) Banks :
Other Addresses (0) 0 00000 => OdEff
0e000 => 1SEfE
Routines Signatures (0) 28000 => 3SEEE
=J- Blements Signatures (4) 1a000 => 27££f

MAF Transfer 8061
- MAF Transfer 8065 01 e o o e = = = = ————————— -
|

KBANTH4 sbix

[o [) [

5

w @

MAF Transfer 8065 02 Properties Information
MAF Transfer 8065 03 1 Label

: New Blement [skip Forced Scalar

RBases :
£0 (20€0), £2 (24b4)
£4 (272a), f€ (3cca)
£8 (48d8), fa (5bBE)
fc (€30e), fe (BS€a)

! Signature . Blement Properties

Disassembly done

Comments S seconds.

Validate Cancel

Generic properties are like following:

‘Label’ : The label of the signature, it will appear nowhere except here and in
‘Elements Signatures’ list. It will not be duplicated on generated element.

‘Skip’ : When skipped, signature will not be searched for.

‘Comments’ : The comment of the signature, it will appear nowhere except here and in
‘Elements Signatures’ list. It will not be duplicated on generated element.

Element signature specific properties are like following:

‘Forced’ : Checked, it indicates that is a provided and hardcoded signature. It
can not be removed or updated.

‘Element type’ combo box : On the right of ‘Forced’ checkbox, it indicates, which type of
element is detected. It is read only and based on the element setup done through button ‘Element
Properties’.

‘Signature’ : This is the hexadecimal signature, which will permit to detect an
element based on the code using it. Code written here should be unique in binary, to permit to
detect only one element.

‘Yellow Smiley’ image : With mouse over this image, you have some information about,
how to write the signature. When clicking on it, you have a window with the same information. It is a
good starting point.

SAD 8061 — 8065 / SAD806x

SAD 8061-8065 X

Element Signature Options

Format:
- Bytes (00 - FF), Spaces, Comma °," and carrier returns can be
used
- Dot ." means one unknown half byte, "*" is not authorized
for this type of signatures
- '#EAOP#' means operation using(including) element address
and should be used.

It will be replaced by identified operation in signature.
- For proper address matching, signature should always
provide complete bytes
Principle:
- Signature matching is based on string regular expression
comparison
- ab,cd, ef will be searched and found in OOFFCEABCDEFOOFF
Purpose:
- Signature has to properly match the operations near element
use,

e

SAD 8061 — 8065 / SAD806x

‘Element Signature’ Element Properties:

By using button ‘Element Properties’, it permit to access to the related form.
This form is composed, with the following elements:

- Extended signature text box : to fill in Signature in this place.
- Element type selection list : list of all possible elements, which will be detected.
- Generic properties : ‘Label’, ‘Short Label’, ‘For 8061 or 8065’ and ‘For

Bank’ fields are generic ones, shared between all element types. ‘Label’, ‘Short Label’ wil
be duplicated on detected element, other will be described.

- Selected element type properties : properties for selected element type.

- ‘Comments’ : Like ‘Label’ or ‘Short Label’, this text bgx is shared
between all types and will be duplicated on detected element like ‘Output omments’| It
will do the same job after this on the element, like it was set up directly in definition.

- ‘Yellow Smiley’ image : still the same meaning.

- ‘Apply’ button : to validate creation / modification.

Elerpent Signature —

New Elenjent

| scaer ! Label Short Label
’ ..[JFunction I lNew Scalar Sc2343
. Table I
\! For 8061 or 8065 For Banik
[Jstruct !
' ructure
I! 8061 only v
e
I Scalar v
]
:: [] Byte Bit Flags
I)
:i [] Signed Bit Flags
" Units Scale

™ Comments Output Comments [_]

SAD 8061 — 8065 / SAD806x

Jus before describing setup type by type, | will just describe what is main difference between the
‘Element Signature’ coding, compared to ‘Routine Signature’ coding.

‘Routine Signature’ coding uses signature parameters (‘#XX#’), which are values found in matching
code, but ‘Element Signature’ does not need them, it needs the address of the operation using or
including the related element. Keyword ‘HEAOP#’ will be used to do this and in fact it will replace the
whole operation inside the signature, it is something which is not possible at ‘Routine Signature’
level.

The couterpart for this, is that ‘Routine Signature’ permits to match signature with variable code
sizes, through ‘*’ keyword, but it is not possible with ‘Element Signature’, because for now finding
‘HEAOP#’ requires the same number of characters inside rest of signature and code.

| hope it will be possible in the next versions to erase this difference, to extend ‘Routine Signature’
interest and to simplify ‘Element Signature’ code.

For everything else, signature is working exactly in the same way.

SAD 8061 — 8065 / SAD806x

Like for calibration elements (Scalars, Functions, Tables and Structures) selected type provides
globally same options than related element properties, but some properties are shared between all
element types:

Label Short Label
New Scalar | |Sc2343
For 8061 or 8065 For Bank
8061 only v _
and
Comments Output Comments []

No address parameter here, ‘HEAOP#’ which should be present in signature, will permit to calculate
element address automatically.

‘Label’, ‘Short Label’, ‘Comments’ and ‘Output Comments’ will be directly duplicated on detected
element and they will do the same job after this on the element, like if they were set up directly in
definition, for Scalar, Function, Table and Structure. ‘Label’ and ‘Short Label’ take default values
based on selected element type.

‘For 8061 or 8065’ combo box is dedicated to structure detection, like ‘For Bank’ number. It permits
to obtain closer signature based on rom hardware and bank number. Otherwise, it is really difficult to
work simply with this type of signatures.

For 8061 or 8065 For Bank
8061 only v _

8061 on

8065 only |

With ‘8061 only’ option, singature will be searched only in 8061 roms, thus from EEC IV
management. With ‘8065 only’ option, singature will be searched only in 8065 roms, yes from EEC V
management.

If ‘For Bank’ stays empty, signature will be searched on all banks in rom, otherwise it will be searched
on specified bank only, one bank only here. Valid banks are the one in the rom, at maximum, you can
have banks 8, 1, 9 and 0.

SAD 8061 — 8065 / SAD806x

Now let’s see dedicated type properties:

- Scalar
Scalar
] Byte Bit Flags
I:l Signed Bit Flags
Units Scale

| X

Nothing different here compared to the setup on ‘Scalars’ for remaining properties, ‘Byte’, ‘Signed’,
‘Bit Flags’, ‘Units’ and ‘Scale’ properties will be directly duplicated to detected element on
disassembly and will also be applied at the same time, exactly like if you had created this element in
definition.

- Function

Rows Number

0 Byte
[Signed Input Input Scale [Signed Output Output Scale

TR

Input Units Output Units

Nothing different here compared to the setup on ‘Functions’ for remaining properties, ‘Rows
Number’, ‘Byte’, ‘Signed Input’, ‘Signed Output’, ‘Input Scale’, ‘Output Scale’, ‘Input Units’ and
‘Output Units’ properties will be directly duplicated to detected element on disassembly and will also
be applied at the same time, exactly like if you had created this element in definition. If ‘Rows
Number’ stays at 0, autodetection will apply for it.

- Table
Columns Number Rows Number] Signed Scale
0 0 [word X
Columns Units Rows Units Cells Units

Nothing different here compared to the setup on ‘Tables’ for remaining properties, ‘Columns
Number’, ‘Rows Number’, “‘Word’, ‘Signed’, ‘Scale’, ‘Columns Units’, ‘Rows Units’ and ‘Cells Units’
properties will be directly duplicated to detected element on disassembly and will also be applied at
the same time, exactly like if you had created this element in definition. If ‘Columns Number’ or
‘Rows Number’ stays at 0, autodetection will apply for it.

- Structure

SAD 8061 — 8065 / SAD806x

.........................

Nothing different here compared to the setup on ‘Structures’ for remaining properties, ‘Number’,
and ‘Structure’ properties will be directly duplicated to detected element on disassembly and will
also be applied at the same time, exactly like if you had created this element in definition. You can
notice our ‘Yellow Smiley’ image, present for some help on structure writing. If ‘Number’ stays at 0,
autodetection will apply for it.

Do not forget to use the apply button after updates and before quitting this form.

SAD 8061 — 8065 / SAD806x

‘Element Information’ for ‘Elements Signatures’:

4 SAD 8061-8065 (KBAN7H4.BIN / KBAN7(H4)) -] X
File Disassembly Output Tools ?
Properties INew Blement]S | |
[Reserved (185) KBANTHABIN
Tables (0) 8065 Binary - 221184 Bytes
- Functions (0} KBANT{H4) Strategy
[#- Scalars (8) KBANTHA sbx
Structures (0)
Routines (0)
Operations (0)
-Registers (0) Banks :
Other Addresses (0) o 00000 => Odfff
~ y 1 0e000 => 19££ff
Routines Signatures (0) 8 28000 => ISEEE
[#- Blements Signatures (4) $ 1a000 => 27EEE

RBases :

£0 (20€0), £2 (24b4)
£4 (272a), f€ (3cca)
£8 (48d8), fa (5bBE)
fc (€30e), fe (BS€a)

fFheckSum is wvalid

CheckSum cOde

Ease Rddress e000
kC Exe Time 005d
[evels Number]
[faisbs Numbex 1
|

‘Elements Signatures’ possess an additional ‘Element Information’ tab too, which includes additional
details grabbed during disassembly and interessant to be known.

In this case, it permits to see, if signature was detected one time or more and if it was one time,
which element was generated by it in definition.

Writing an element signature, using ‘HEAOP#':

SAD 8061 — 8065 / SAD806x

| will not described how to write a signature from the beginning, so please refer to ‘Routines

Signatures’ part for that.

As described previously, an element signature has no signature parameters keywords, except
‘HEAOP#’ for the operation related with use of element to detect. ‘HEAOP# is mandatory, for this
type of signature, but ‘*’ keyword is not possible due to some limitation for now (probably mines or

on my time).

Still the basis, dedicated to element signature:

0 Element Signature Options

Format:
- Bytes (00 - FF), Spaces, Comma °," and carrier returns can be
used
- Dot "." means one unknown half byte, '*" is not authorized
for this type of signatures
- '#EAOP#' means operation using(including) element address
and should be used,

It will be replaced by identified operation in signature,
- For proper address matching, signature should always
provide complete bytes
Principle:
- Signature matching is based on string regular expression
comparison
- ab,cd, ef will be searched and found in OOFFCEABCDEFOOFF
Purpose:
- Signature has to properly match the operations near element
use,

SAD 8061-8065 X

MAF Transfer function (FN036) signature is the perfect (and the first) example.

This is one of the possible codes which are using it.

8 249d: fa di

8 249e: c4,08,d3 stb RO8,Rd3

8 24al: al,3£,00,12 1ldw R12,3f

8 24a5: al,40,80,16 1dw R16,8040

8 24a9: £3 popp

8 24aa: 45,18,03,£0,46 ad3w R46,Rf0,318
8 24af: a3,e4d,30,36 1dw R36, [Red+30]
8 24b3: 88,36,46 cmpw R46,R36

3 24be: d4dg, 12 jgtu 24ca

8 24b8: 45,78,00,46, 34 ad3w R34,R46,78

8 24bd: 88,36,34 cmpw R34,R36

8 24c0: d3,08 jnc 24ca

8 24c2: 94,46,36 xrb R36,R46

8 24c5: 71,03,36 anZ2b R36,3

g 24c8: d4df,04 Jje 24ce

8 24ca: c3,e4,30,4¢6 stw [Red+30],R46
8 24ce: 71,ef,b4 anZb Rb54,ef

8 24d1: f£0 ret

This signature will match:

disable ints;

INT MASK = Rd3:
HSO MASKl = 3f;
HSO MASK2 = 8040;
pop (PSW) ;

R4d6 = FNO36;

R36 = [11b0];

if ((uns) R46 > R36) goto 24ca;
R34 = R46 + 78;

if ((uns) R34 < R36) goto 24ca:
E36 "= R46;

R36 &= 3;

if (R36 == 3) goto Z24ce:

[11b0] = R4e;

R5E4 &= ef;

return;

SAD 8061 — 8065 / SAD806x

#EAQOP#

2
88,..,..

D9, 14
45,78,00, .., ..
BBy veyengangen

D3, 08

9, .., ..
71,03, ..

DF, 05

ok P
71,00, ..

FO

You can see that ‘HEAOP#’, is replacing operation at '45,18,03,f0,46’ and it could be any operation,
but just before the signature which is following.

It is not necessary to start signature with ‘HEAOP#’, it could be in the middle of the signature or at its
end, but it should always replace complete operation, related with a calibration element.

Signature should be as generic as possible, but in some cases, it has to be duplicated.

#EAOP#
RB!--!--!--
88,..,..
D9,13
45,78,00,..,..
8B!"!"!"
D3,08

94, ..,..
71,03,..
DF, 04
C3,vayanynn
FO

This one is for MAF Transfer function (FN036) too, but it will not work on provided code and it is
required to create some duplicated signature, because of small differences and because of number
of operations between both. This is still related with ‘*’ keyword which is missing.

‘Elements Signatures’ category menu:

No specificity at all.

SAD 8061 — 8065 / SAD806x

‘Element Signature’ element menu:

No specificity at all.

SAD 8061 — 8065 / SAD806x

SAD 8061 — 8065 / SAD806x

Disassembly Text Output:

As it was already said, SAD 806x text output is largely inspired from SAD disassembler
(created by Andy, tvrfan), so | let you read its documentation to discover what was in place. | will not
try to explain, what should be a good text output for a disassembly, but | will show you things, which
are a bit different from what is existing or which can be a bit complicated to understand.

Disassembly operations basis:

| will try to quickly describe, what the main items are in the disassembled code.
This is an operation:

8 dfs7: 71,7f,64 anZb R64,7f R64 &= Tf;
1 2 3 4

1. ‘8 df87is the complete address of the operation, ‘8" is the bank where the operation is
stored in the rom, ‘df87’ is the address in the bank, knowing these addresses have 0x2000
added, which becomes their minimum address.

2. ‘71,7f,64' is the hexadecimal code for the operation. First byte ‘71’ is the instruction, ‘7f,64’
are the parameters.

3. ‘an2b R64, 7' is the assembler code for the operation. ‘an2b’ is the instruction, ‘R64, 7f" are
the parameters.

4. ‘R64 &= 7f;" is the C like code for the operation. ‘&="is the instruction, ‘R64’ and ‘7f are the
parameters. Known parameters are only translated in this place.

‘R64’ is a register, with address 0x64.

‘12112] would be a register too, with address 0x112, but because it is on more than 2 characters, it is
written without ‘R’.

‘[R64]" would be a pointer to the value which is in register ‘R64’.

Here we have 2 operations.

8 dfsf: 9b,fe, 08,00 cmpb 0, [Rfe+8]
8 df93: df,0f je dfad if (0 == [Scl640]) goto dfad;

Comparison operations (cmp) are used only to fill in stack with result. Next operations can
use this result, like here. This is why last operation, C like code, contains more information, than the
current operation hexadecimal code, because it includes comparison operation detail.

‘[Rfe+8]’ is an address in rom, but ‘Rfe’ is a RBase register, so address is in this case is on bank 1. So
‘[Rfe+8]’ is the Rfe RBase address with 0x8 added (‘1 8972’ finally), but real value does not appear in
our case, because a scalar ‘[Sc1640]’ has been created at this address, so C like code shows the
translated value, including this scalar.

Here we have 2 calls to routines.

8 dfeb: 28,el scall 048 Sub0890 () ;
8 dfee: ef,87,48 call 27f8§ UUBytelU() ;

SAD 8061 — 8065 / SAD806x

When C like code contains parenthesis like this, it is a call to a routine. The first line is for an
unknown routine, translated based on the auto numbering, the second one is for a known routine.
Principle stays the same.

8 7c45: ef,d4,cf call 4clc Sub0102 (24, 54,0, £f,10,REf) ;
§ 7c48: 24,00,54,10,ff, ££,00 $args

In this case, it is still a call but using arguments. Arguments are on the second line, but will
appear in C like code on the first line, to be clearer. Line at address ‘8 7c48’ is not an operation, it is
only arguments for previous operation or you can consider it is part or previous operation.

Disassembly elements basis:

Scalar examples:

1 23fé6: €0,00 Rf0+396 5c0027 word 60 96
1 23f8: 00 Rf0+398 5c0028 byte 0 0
1 2 3 4 5 6 7

1. The complete address for the element.

2. The hexadecimal value for the element. Do not forget this is an Intel Rom, word values are
inverted.

3. The RBase equivalence, if it exists.

4. The ‘Short Label’ for the scalar. If ‘Label’ has been specified, it will output over the element.
5. The type of the element.

6. The combined hexadecimal value.

7. The decimal value, using the defined scale, if it exists.

Scalars detected or defined as bit flags:
B7 B6 B5 B4 B3 B2 Bl BO
00 0 0 1 1 1 0
1 6fb3: Qe Rfctcab Sclz249 byte e 14

TQ MODULE SW - TQ MODULE SW - (TQM SW):

1 8%a8: 01 Rfe+3e TQ MODULE SW byte 1 1

OBDII TST SW - OBDII Monitor Tests SW:
B7 B6 B5 B4 B3 BZ Bl BO
1 1 1 1 0 0 1 0
1 8dde: f2 Rfe+3ed4 OBDII TST SW byte £2 242

Functions examples:

Function 137:

££,00
60, 0d
46,20
3c, 33
3a, 40
34,40
lc, ££
00, £

Function 138:

££,££,00,05
50, 00,00, 05
14,00,00,03
0a, 00,00,02
00,00,00,00
00,00,00,00
00, 00,00, 00
00,00,00,00

2

func
func
func
func
func
func
func
func

func
func
func
func
func
func
func
func

£f, 0
60, d
46, 20
3c, 33
3a, 40
34, 40
1lc, ££f

0, £f£f

£EEE, 500
50, 500
14, 300

a, 200
0, 0
0, 0
0, 0
0, 0
4 5

‘Short Label’ and ‘Label’ are found as header of the function.

1.

2.

The complete address for the function row.

SAD 8061 — 8065 / SAD806x

255, 0
96, 13
70, 32
€0, 51
58, 64
52, 64
28, 255

0, 255

65535, 1280
80, 1230
20, 768
10, 512

0, 0
0, 0
0, 0
0, 0
6 7

The hexadecimal value for the row, including input and output columns. Do not forget this is
an Intel Rom, word values are inverted.

The type of the element.

The combined hexadecimal value for the input column.

The combined hexadecimal value for the output column.

The decimal value, scaled if set up, for the input column.

The decimal value, scaled if set up, for the output column.

Tables examples:

A byte one:

Th123 - Table 123:

1 953¢: 03,03,03,03

1 9540: 03,03,03,03

1 9544: 03,03,03,03

1 9548: 03,03,03,03

1 954¢: 03,03,03,03

1 9550: 03,03,03,03
1 2

A word one:

Tb{22 , Table 122: R

1 35201 S0, £ 00, 1,00, 15,00, £, c01 LE, 20, 1£, o0 1t
1 2

table
table
table
table
table
table

table
table

3

-
-
-

-
-
-

-
-
-

.,
-
-

-

UJUJUJ‘E)JUJUJ
UJUJUJ‘E)JUJUJ
UJUJUJ‘E)JUJUJ
W W W wow

-
-

1fe0, 1fe0, 1fe0, 1fed, 1fed, 1fe0, 1fel
1fe0, 1fe0, 1fel, 1fe0, 1fel, lfel, lfeld

4

‘Short Label’ and ‘Label’ are found as header of the table.

3, 3, 3, 3
3, 3, 3, 3
3, 3, 3, 3
3, 3, 3, 3
3, 3, 3, 3
3, 3, 3, 3
5
8160, 8160, 8160, 8160, B160, B160, 8160
8160, 8160, 8160, 8160, 8160, 8160, 8160
5

SAD 8061 — 8065 / SAD806x

1. The complete address for the table row.

2. The hexadecimal value for the row, including all columns. Do not forget this is an Intel Rom,
word values are inverted.

3. The type of the element.
4. The combined hexadecimal value for the all cells in the table.
5. The decimal value, scaled if set up, for the all cells in the table.

Structures examples:

ADCHANSt - AD Channels Structure:

8 4072: 32,00,3c,00,6a,01,7c,7c,00,00,39,80,£0,85 oatruct Rbase+32, Rbase+3c, 16a, R7c, Ric, 0, 8039, 85f0
8 4080: 0b,00,00,00,66,01,8a,00,00,00,00,00,00,00 ostruct Rbase+ b, Bbase+ 0, 166, R8a, R 0, 0, 0, 0
§ 408e: 33,00,00,00,6c,01,7c,00,00,00,4a,80,£7,85 ostruct Rbase+33, Rbase+ 0, 1éc, R7c, R 0, 0, 804a, 85f7
§ 409c: 36,00,00,00,6e,01,7c,00,00,00,00,00,el,85 ostruct Rbase+36, Rbase+ 0, lée, R7c, R 0, 0, 0, 85el
8 40aa: 38,00,00,00,70,01,7c,00,00,00,00,00,00,00 oatruct Rbase+38, Rbase+ 0, 170, R7c, R 0, 0, 0, 0
8 40b8: 39,00,00,00,72,01,7¢,00,00,00,00,00,00,00 ostruct Rbase+39, Rbase+ 0, 172, R7c, R 0, 0, 0, 0
8 40c6: 3b,00,00,00,f0,02,7c,00,00,00,00,00,00,00 ostruct Rbase+3b, Bbase+ 0, 2f0, R7c, R 0, 0O, 0, 0
§ 40d4: 3a,00,00,00,8e,02,7c,00,00,00,1d, 80,00, 00 ostruct Rbase+3a, Bbase+ 0, 2ee, R7c, R 0, 0, 801d, 0
8 40e2: 35,00,00,00,74,01,7c,00,00,00,00,00,00,00 oatruct Rbase+35, Rbase+ 0, 174, R7c, R 0, 0, 0, 0
8 40£0: 0c,00,00,00,kg,02,8a,00,00,00,00,00,00,00 ostruct Rbase+ ¢, Rhase+ 0, 2bc, R8a, R 0, 0, 0, 0

IAECTACTLevSt - Ignition Advance ECT ACT Levels Structure:
g 8c2c¢c: 74,00,84,00,07,04,05,04,04,04,06,04,0a,04 ostruct 74, 84, 407, 405, 404, 406, 40a
8 8c3a: 88,00,84,00,08,04,00,00,09,04,00,00,0b,04 ostruct 88, 84, 408, 0, 409, 0, 40b

1 2 3 4
‘Short Label’ and ‘Label’ are found as header of the structure, properly defined here.

1. The complete address for the structure row/occurrence.

2. The hexadecimal value for the row/occurrence. Based on structure definition, all
rows/occurrences, have not always the same size.

3. The type of the element (‘struct’ is inside calibration part, ‘ostruct’ melted between
operations)

4. The output defined by structure definition itself, so it can be very variable from one structure
to another or from one row/occurrence to another.

Disassembly unknown parts:

Some parts are not disassembled, because it was not possible for SAD 806x to reach the code at this
moment, when it is an operation part or because calibration element was not detected, based on its
use in an operation.

Sub0097:

0 49dd: f2 pushp push (PSW) »

0 49de: ad,07,94 ldzbw R94,7 R94 = (uns)7;

0 49el: 20,0a sjmp 49ed goto 49%ed;

0 49e3: £2,ad,08,94,20,04,£f2,ad Unknown Operation/Structure
0 49eb: 09,94 Unknown Operation/Structure
0 49%ed: 2e,23 scall 4812 Sub0088 ()

0 49ef: £3 popp pop (PSW) ;

0 49f0: f1 reti return;

SAD 8061 — 8065 / SAD806x

In operations part, it will be marked as ‘Unknown Operation/Structure’, because it could be a
structure too. You will find the address, the hexadecimal code (8 bytes by 8 bytes) and the mark.

0 6990: f0 ret return;

0 ©991: f2,af,3a,03,40,b3,3a,04 Unknown Operation/Structure
0 6999: 42,b3,3a,05,43,11,38,3b Unknown Operation/Structure
0 ©%al: 40,17, 3c,40,0e,35,40,16 Unknown Operation/Structure
0 ©%a9: b3,42,03,37,b3,42,02, 3¢ Unknown Operation/Structure
0 6S%bl: bl,02,38,b3,42,01,35,17 Unknown Operation/Structure
0 69p9: 38,b2,42,34,17,38,f3,f0 Unknown Operation/Structure
Sub0138:

0 6%9cl: f2 pushp push (PSW) ;

In this case it could be interesting to create a routine at address ‘0 6991’ in definition. A part starting
with ‘f2’ (‘push(PWD);’) and ending with ‘f0’ (‘return;’) should probably be a routine in EEC V rom.
SAD 806x has not processed it, because until now, no ‘call’ or ‘goto’ was done to this address. This
address is probably present in an undetected vector list or in an unknown structure.

9 ff9a: ff,ff 0 Tyre Revolutions per Mile

9 £ff9c: ff,ff 0 Rear End Gear Ratio

9 ff9%e -> fffe fill ff

9 ffff: 91 Unknown Operation/Structure

Here you can some reserved addresses at ‘9 ff9a’ and ‘9 ff9c’, but just after that, you can see 2 types
of ‘Unknown Operation/Structure’. The last line that we have already seen and the line which begins
with ‘9 ff9e -> fffe’. When unknown bytes are repeated 8 times or more, they are grouped like this
and marked as ‘fill’. So from address ‘9 ff9e’ to address ‘9 fffe’, bytes are filled with ‘ff’ and it is
unrecognized/undefined bytes.

Fn016 - Function 016:

1 2258: £f,££,00,07 fune FEEE, 700 65535, 1792
1 225c: 66,66,00,07 func 6666, 700 26214, 1792
1 2260: cd,0c,00,00 func ced, 0 3277, 0
1 2264: 00,00,00,00 func 0, 0 0, 0
1 2268: 00,00,00,00 func 0, 0 o, 0
1 226c: 00,00,00,00 func 0, 0 0, 0
1 2270: 00,00,00,00 func 0, 0 0, [
1 2274: £f,£f,cd,c8,%a,a2,58,30 Unknown Calibration ££, £f, cd, cB, %a, a2, 58, 80 255, 255, 205, 200, 154, 162, €8, 128
1 227c: 00,30, ff,00,58,00,33,22 Unknown Calibration o, 80, ££, 0, 53, 0, 33, 22 0, 128, 255, ©0, 88, 0, 51, 34
1 2284: la,40,0a,59,05,€5,00,80 Unknown Calibration la, 40, a, 59, 5, €5, 0, 80 26, 64, 10, 88, 5, 101, 0, 128
1 228¢c: ff,5b,=6,5b,%a,¢€s,58,80 Unknown Calibration ff, Sb, e6, 5b, %a, 6e, 58, 80 255, 91, 230, 91, 154, 110, 88, 128
1 2294: 00,80 Unknown Calibration a, 80 0, 128

Fn017 - Function 017:

1 2296: £f,7f,cd,00 fune TEEE, cd 32767, 205
1 22%a: 00,80,cd,00 func 8000, cd -32768, 205
1 22%: 00,80,cd,00 func 8000, cd -32768, 205
1 22a2: 00,80,cd, 00 func 8000, cd -32768, 205
1 22a6: 00,80,cd,00 func 8000, cd -32768, 205
1 22aa: 00,80,cd,00 func 8000, cd -32768, 205
1 22ae: 00,80,cd,00 func 2000, cd -32768, 205
1 22b2: 00,80,cd, 00 func 2000, cd 32768, 205

In calibration part (part related with RBase addresses), which contains all tables, functions and
classical scalars, an unknown part is marked as ‘Unknown Calibration’. You will find the address, the
hexadecimal code (8 bytes by 8 bytes), the mark and the values, hexadecimal and decimal, (8 bytes
by 8 bytes). Yes in this case, it is easy to understand, that it is a function (they always start with ff, 7f
or ffff or ff7f), but same thing SAD 806x has not found the code using this address, so nothing was
disassembled.

SAD vs SAD 806x differences:

SAD version for a routine:

Sub6t63:

8 df57: f2 pushp
8 df58: a3,fe, 06,30 1dw

8 dfbc: b3,fe, 04,32 1db

8 dfe0s: 11,25 clrb
8 dfe2: ad, 97,28 ldzbw
8 dfeb: 28,el scall
8 dfe7: al,88,89,36 1dw

8 dfeb: b0,2c,38 1db

8 dfee: ef,87,48 call
g df71l: 9b,fe, 03, 3c cmpb
8 df75: d7,0c Jjne

8 df77: b3,d4,e6f,8f 1db

8 dfTb: 3c,8f,05 jb

8 dfT7e: 91,80,64 orb

8 df81: 20,07 s5imp
8 df83: b3,fe,02,3c 1db

8 dfg87: 71,7f,64 anZb
8 df8a: ¢7,01,d7,01, 3c stb

8 df8f: 9b,fe, 08,00 cmpb
8 df93: df,0f je

8 df9b: b3,fe,02,3c 1db

8 df99: 9b,fe, 03, 3c cmpb
8 dfod: df,05 je

8 df9f: 91,10,7a orb

8 dfa2: 20,03 s5imp
8 dfad: 71,ef,7a anZb
8 dfa7: £3 popp
8 dfaB: f0 ret

SAD 806x version for the same routine:

R30, [Rfe+6]
R32, [Rfe+4]
R25

R28,97

2048
R36,8988
R38,R2c
27f8

R3c, [Rfe+3]
dfg3

R8f, [Rd4+61f)]
B4,R8f,df&3
R64, 80

df8a

R3c, [Rfe+2]
Rod,7f

R3c, [1d7]
0, [Rfe+8]
dfa4

R3c, [Rfe+2]
R3c, [Rfe+3]
dfad
R7a,10
dfa’7

R7a,ef

SAD 8061 — 8065 / SAD806x

push (PSW) ;

R30 = [89701];
R32 = [89%6e];
R25 = 0;

R28 = (uns)97;
Sub66l () ;

R36 = 8983;
R38 = R2c;

UUByteLU()

if (R3c == [89ed]) {
RE8f = [Rd4+6f];

if (!B4 R8f) {

R64 |= 80;

goto df8a; } }

R3c = [896c];

R64 &= T£;

[1d7] = R3c;:

if (0 !'= [8972]) {
R3c = [896c];:

if (R3c '= [896d]) {
R7a |= 10;

goto dfa7; } }

R7a &= ef;
pop (PSW) ;
return;

Sub0887:

9 df57: f2

9 df58: a3,fe, 06,30
3 df5c: b3,fe, 04,32
8 dfeld: 11,25

3 dfe2: ad, 97,28

9 dfeb: 28,el

4 dfe7: al,88,89,3¢6
9 dfeb: b0,2c,38

9 dfee: ef,87,48

8 df71: 9b,fe, 03, 3c
8 df75: d7,0c

8 df77: b3,d4,6f,8f
9 df7b: 3c,8f,05

9 dfve: 91,80,64

3 dfgl: 20,07

8 df83: b3,fe,02,3c
8 dfg7: 71,7f,64

4 df8a: c7,01,d7,01,3c
9 df8f: 9b,fe, 08,00
8 df93: df,0f

8 df95: b3, fe, 02, 3c
8 df99: 9b, fe, 03, 3c
9 dfod: df,05

4 dfof: 91,10,7a

9 dfaz: 20,03

8 dfad: 71,ef,Ta

8 dfa7: £3

9 dfag: f0

pushp
1dw
1db
clrb
ldzbw
scall
1dw
1db
call
cmpb
jne
1db
ib
orrb
sjmp

1db
anZ?b
stb
cmpb
je
1db
cmpb
je
orrb
sjmp

anZb

POFP
ret

R30, [Rfe+6]
R32, [Rfet+4]
R25

R28,97

e048
R36,8988
R38,R2c
27f8

R3c, [Rfe+3]
dfs3

R8f, [Rd4d+6f]
B4,R8f,df83
R64, 80

df8a

R3c, [Rfe+2]
Red, 7L
[1d7],R3c
0, [Rfe+8]
dfad

R3c, [Rfe+2]
R3c, [Rfe+3]
dfad

R7a,10

dfa’7

R7a,ef

SAD 8061 — 8065 / SAD806x

push (BSW) ;

R30 = [Scle39]:
R32 = [Scle38]:
R25 = 0;

BR28 = (uns)97;
Sub0890 ()

R36 = Fndl8;
R38 = R2c;

UUBytelLU()

if (R3c != [Sclée37]) goto df83;
REf = [Zef]:

if (B4 R8f) goto df83;

R64 |= 80;

goto df8ar

BR3c = [Scle36];
Red &= Tf;
[1d7] = R3c:

if (0 == [Scled0]) goto dfad;
R3c = [Scle36];

if (R3c == [Sclé37]) goto dfad;
R7a |= 10;
goto dfa7:

R7a &= ef;
pop (PSW) ;
return;

As you can seg, it is like the same thing, yes routine number is not the same on one side compared to
the other, some addresses are not recognized, but it is not the difference.

With SAD 806x layout is for now fixed, for operations or calibration elements, no way to add
additional spaces between parts. Other important thing, conditional ‘gotos’ keep their original
meaning with SAD 806x and no ‘{’ or ‘} is used to group the code.

SAD basic version for scalars:

1 23f6: &0,00
1 23£8: 00
SAD 806x one:

1 23f6: 60,00

1 23f8: 00

word &0

byte

0

Rf0+396 5c0027

Rf0+398 5c0028

60 96

SAD 806x layout is fixed and the one for SAD has to be defined, so the result is different.

| will not continue to detail differences, because the others are really related with the layout setup

which is possible in SAD, not in SAD 806x.

Examples of advanced text outputs:

The header and the famous register list (which remains optional).

SAD 8061 — 8065 / SAD806x

Binary File :
KBANT7H4 224.BIN

8065 Disassembly

Seéx file :

KBANTH4 224.s6x

229376 (38000) bytes
KBAN7 (H4) Strategy Part Number XSTVAJ
PATS fEfffffffffffffffffffffffffffffff
VID Disabled
Options
Default options
CheckSum : SMP Base Address 2000
cOde CC Exe Time : 005d
Valid Levels Number 8
Calibrations Number 1
Banks
0 00000 0dfff 1 0e000 1bfff
8 1c000 29fff 9 2a000 37£ff
RBases :
£0 2060 24b3 f2 24b4 2739
f4 273a 3cc9 fe 3cca 48d7
f8 48d8 5b85 fa 5b86 630d
fc 630e 8969 fe 896a aze7
Registers List
R0OS B 9 ROS W wAM ATRMASS
ROf B f ROf W RPM
R13 B 13 RI3 W wTP_REL
RSb fEGR_MON_FLG2 R61 WwLBMF_INJ1
R71 bP0406FLGS Rie B bOBDIT_RDY
R7e W wR7e R87 bOBDII_ENA
R9b bECT RY9c bACT
Ral bDT12SH Rb4 bATMR1
Rd9 wLoad Rdb WPERLOAD
[10£f] bRPM [240] wISLAMUL
[242] WTSLAMU2 [250] wTOTLDST
[252] wAIR LD CT [254] wPCT LOAD
[256] wCHT [259] DPISCFLG LST
[25e] WLAMMUL [266] ScRPM 016
[268] scLOAD 012 [270] WSPK_FFS
[272] WSPK_MBT FFS [274] wSPK_BDL FSC
[276] WwMFAMUL [282] WSPK M B T
[284] wSPK _MBT LAST [29¢] PSPK _MAX TRET
[2a0] DPSPK TIPSTATE [2al] PSPK TIPSLOPE
[2ad] scLOAD 013 [2af] scLOAD 013B
[2b0] scECT_014 [2b1] ScECT_014A
[2b2] scSPK_LAMBSE 015 [2b3] 5cSPK_LAMBSE 0153
[2b7] SCACT_024F [2b9] scRPM_070X
[2ba] scLOAD 013X [2bk] scRPM_017
[2c4] wSPK_SAF_HOLD [2c8] wSPK_BDL
[2d2] bSPK_LAMBSE [2e0] wDEBYMA
[2£8] wMAFERR [2fe] WPERLOAD_TISC
[304] bISCFLG [33e] bP1408FLGS
[376] wBG_TMR [517] PATR_LD_WOT
[522] WPG_ATIR [586] WwTQ_BRAKE_S
[59¢] wINJ_ACTUAL [59e] bTQ_SOURCE
[5a4] wTQ LOSS [5ba] wTQ NET LED
[5bc] wLOAD TQ [5c6] DPTR LIM OSC
[5d1] POSC_MULT [5e2] WwTQDRV DNDT
[63f] bVSBAR [642] wTQ_ BARL
[7d2] wBP_WORD [7d3] bBP
[875] DPTQ NORM KAM [878] wINFAMB KAM
[dOe] wDSDRFM WORD [d14] wIDCI
[d16] wIDC CL [dc4] wMIS TQ THRES
[dcé] wMIS TQ DELTA [dc8] wMIS TQ LAST

Some scalars.

AHISL - Injector High Slope AHISL:
1 3258: 22,37 Rf4+b30

ALOSL - Injector Low Slope ALOSL:
1 325a: 22,37 Rf4+b32

FUEL BKPT - Injector Breakpoint FUEL BKPT
Rf4+b34 FUEL BKPT

1 325¢: 50,01

MINPW - Injector Min PW Clip MINPW:
1 325e: 4£,00

GASOHOL AFR -
1 3260: 8f, 3a

(non fuel correcting):

NOMINAL_ AFR -
1 3262: 8f,3a

(Stoich AFR):

Some functions and tables.

AHISL

ALOSL

Rfd+b36 MINFW

FNO44 - Load Scaling - FNO4d:
1 : £f, ££,00,09 func f1FF, 900 2,00, 9,00
1 80,bb, 00,09 func bb2a, 200 1,16, 9,00
1 00,74, 00,08 fune 7400, 200 0,98, 8,00
1 00, 4b, 00, 06 func 4b00, 600 0,59, €,00
1 00,00,00,00 func 0, 0 0,00, 0,00
1 00,00, 00,00 func a,] 0,00, 0,00
1 00,00,00,00 func a, 0 0,00, a,00
1 00,00, 00,00 func a, 0 0,00, 0,00
FNOTOE - REM Scaling - FNOTOE:
1 25ce: ££,££,00,08 func £££E, 200 16383,75, 9,00
1 25cc: 60,6d,00,08 func 6460, @00 7000, 00, 9,00
1 25d0: 80,3e,00,07 func 380, 700 4000, 00, 7,00
1 e0,2e,00,06 func 2eed, 600 3000, 00, 6,00
1 20,1c,00,02 fune 1c20, 200 1800, 00, 2,00
1 60,09,00,00 fune 960, 0 600, 00, 0,00
1 00,00, 00,00 fune a, 0 0,00, 0,00
FNO77 - PCT_LOAD Scaling (FN103%) - FNOT7:

££, ££,00,08 func ££FF, 800 2,00, 8,00

00,20,00,08 func 800a, 800 1,00, 8,00

: 9a,19,00,00 fune 199a, 0 0,20, 0,00

00,00, 00,00 func o, o 0,00, 0,00

0g,00, 00,00 func a, 0 0,00, 0,00
FNO78 - ISCDTY Scaling (FN1039) - FNO78:

££,££,00,0a func £EEE, a00 2,00,

00,%0,00,0a func 8000, a00 1,00,

00,00,00,00 func a, 0 0,00,

00,00, 00,00 func a, 0 0,00,

00,00, 00,00 fune 0, 0 0,00,
FNLO36A - Load at Sealsvel (LWPM):
1 08,0€,04,04,03,03,02,02,03,03 table 8 & 4, 4, 3, 3, 2, 2z, 3,
1 + 39,30,1b,17,13,11,11,10,0b,0¢c table 3%, 30, 1b, 17, 13, 11, 11, 10, b,
1 de,4a,3a, 37,34, 22, 2a, 1e,19, 14 table e, da, 3a, 37, 34, 2e, 2a, le, 13,
1 54,56, 45,45, 4a,47,42,33,2¢c,24 table 54, 56, 4f, 4f, 4a, 47, 42, 33, 2g,
1 §4,5¢,57,5a,59,57,56,45, 3d, 32 table 54, 5S¢, 57, 5a, 59, 57, 56, 45, 3d,
1 56, 5d, 5b, 5£, 60, €0, 61,51, 44,36 table 56, 5d, Sb, 5£, €0, €0, €1, 51, 44,
1 56,5£, 60, 62,63, 63,65, 57, 4b, 3¢ table 56, 5f, 60, €2, 63, €3, &5, 57, db,
1 56,5f, 61,63, 64, 68, 60,59, 4f, 44 table 56, 5f, €1, €3, 64, &8, 6e, 59, df,
1 67, 5b, 60, 64, 65, 69, 6d, 55, 60,47 table 57, bb, 0, &4, 65, 69, &d, 5g, 50,
1 : 60,65, 65, €6, 68, €a, £d, 5,54, b table €0, €5, €5, €6, €3, €a, &d, 5f, 54,
FN1037 - Inferred BE Load:
1 2670: 00,00,00,00,00,00,00,00,00,00 table o, o 0o © 0o 0 @ 0 D,
1 2é&7a: 05,00,00,01,01,01,01,00,00,00 table 5 0, 0, 1, 1, 1, L, 0, 0,
1 0a,05,02,02,02,02,02,00,00,00 table a 5 2, 2 2, 2, 2, 0, 0,
1 0b, 08, 06, 06,05, 03,02, 02, 04,03 table b, 8 6 & 5 3, 2, 2, 4
12 0Oc,0a,09,13,13, 0e, 0d, 04, 08,05 table e, a, 9 13,13, e, d, 4 B,
1 0c,0a, 0a, 18,16,13,11, 06, 0b, 06 table €, a, a 18 16 13, 11, & b,
1 0c, 0B, Ob, 18, 16,13, 14, 08, 0c, 07 table ¢, b, b, 18, 1§ 13, 14, & c,
1 oc,0¢c, 0c, 18,16,13,14,09,04,07 table c, ¢ ¢ 18, 1§ 13, 14, 9, d4d,
1 0c,0¢,0c, 18,16,13,14, 04, 0f, 0a table G, & o 18, 16, 13, 14, a, £,
1 26ca: 0d,0d,0d,18,16,13,14,0b,10,0a table d, d, d, 18, 16, 13, 14, b, 10,
FN1039 - Sealevel ISC Flow Inferrsd BE:
1 00,00,04, 18,20, 3d, 4£, 59, 60,73, 73 table o, o, 20, 3d, 4f, 59,
1 00,00,04,14, 1e, 39, 45,53, 53,60, 73 table 0, o, le, 39, 45, 53,
1 00,00,04,13,1b, 32,44, 50, 56,5a, 71 table 0, 0, 1b, 32, 44, 50,
1 00,00,04,0%£,19, 22, 3c, 4d, 4d, 4=, 6d table 0, 0 19, 2e, 3c, 4d,
1 00,00,03,09,11, 2a, 35, 3¢, 43, 45, 58 table o, o, 11, 2a, 35, 3c,
1 00,00,04,08,0¢c, 14,25, 2f, 2,30, 40 table 0, 0, ¢, 14, 25, 2f,
1 00,00,02,04,08,0e,10,12,14,16, 24 table 0, o, 2, e, 10, 12,
1 00,00,01, 02,05, 06,08, Ob, Oc, 0d, 02 table 0, o, 5, & 9, b,
1 00,00, 00, 00, 00, 00,00, 00, 00, 00, 00 table 0, 0, 0, 0, 0, 0,

A classical routine.

[T

60,

73,
60,
5a,
de,

30,
18,
4,

73
73
ki
ad

40
28

Rf4+b38 GASOHOL AFR

Rf4+b3a NOMINAL AFR

word
word
word
word
word
word
0,06, 0,05, 0,03,
0,45, 0,38, 0,21,
0,61, 0,58, 0,45,
0,66, 0,87, 0,62,
0,66, 0,72, 0,68,
Q,87, 0,73, 0,71,
0,67, 0,74, 0,75,
0,67, 0,74, 0,76,
0,68, 0,71, 0,75,
a,75, 0,78, 0,79,
0,00, 0,00, 0,00,
a,04, 0,00, 0,00,
0,08, 0,04, 0,02,
0,08, 0,06, 0,05,
0,09, 0,08, 0,07,
0,09, 0,08, 0,08,
0,08, 0,09, 0,08,
0,09, 0,09, 0,09,
0,08, 0,08, 0,09,
a,10, 0,10, 0,10,
0,00, 0,00,
0,00,
0,00,
0,00,
0,00,
0,00,
0,00,
0,00,
0,00,

3722

3722

150

4f

SAD 8061 — 8065 / SAD806x

3asf

3a8ft

0,03, 0,02,
0,18, 0,15,
0,43, 0,41,
0,62, 0,58,
0,70, 0,70,
0,74, 0,75,
0,77, 0,77,
0,77, 0,78,
0,8, 0,79,
0,80, 0,81,
0,00, ©,00,
0,01, 0,01,
0,02, 0,02,
0,08, 0,04,
0,15, 0,15,
0,13, 0,17,
0,19, 0,17,
0,19, 0,17,
0,13, 0,17,

0,06, 0,38,
0,06, 0,31,
0,06, 0,30,
0,06, 0,23,
0,05, 0,14,
0,06, 0,13,
0,03, 0,08,
0,02, 0,03,
0,00, 0,00,

0,02, 0,02,
0,13, 0,13,
0,36, 0,33,
0,55, 0,52,
0,68, 0,67,
0,75, 0,7&,
0,77, 0,79,
0,81, 0,86,
0,82, 0,85,
0,83, 0,85,
0,00, 0,00,
.01, 0,01,
0,02, 0,02,
0,02, 0,02,
0,11, 0,10,
0,15, 0,13,
0,15, 0,15,
0,15, 0,16,
0,15, 0,16,
0,15, 0,18,
0,50, 0,95,
0,47, 0,89,
0,42, 0,78,
0,39, 0,72,
0,27, 0,686,
0,19, 0,31,
0,13, 0,22,
0,08, 0,09,
0,00, 0,00,

0,00,

0,02,

1,39,

1,25,
1,20,
0,94,
0,73,

0,17,
0,00,

0,02

0,53

0,59

0,00

1,50,

1,34,
1,20,
1,05,
0,73,
0,31,
0,19,
0,00,

1,80,
1,50,
1,41,
1,22,
1,08,
4,75,
a,34,
0,20,
0,00,

14, 64

14,64

1,80

1,717

0,00

SAD 8061 — 8065 / SAD806x

OBDII_OSC_SUB:

9 2436: f2 pushp push (PSW) ;

9 2437: c7,01,bd,17,00 stb [17bd],0 [bOSC SUB] = 0

9 243c: c7,01,bc,17,00 stb [17bc], 0 [bOSC BYTOFP] = 0O;

9 2441: c3,01,ba,17,00 stw [17bal, 0 [wOSC _ADDR] = 0;

9 2446: c3,01,b8,17,00 stw [17b8]1,0 [bOSC _OVAL] = 0;

9 244b: b0, 6e, 46 1db R46,R6e Rd46 = [fSCP_EXT FG1];
9 244e: 3c,46,02 ib B4,R46,2453 if (B4 R46) goto 2453;
9 2451: 20,de sjmp 2531 goto 2531

9 2453: b3,01,79,17,46 1db Rde, [1779] Rde = [bOSC STATE]:

9 2458: 99,02,46 cmpb R46,2

9 245b: df,02 je 245f if (R46 == 2) goto 245f;
9 245d: 20,d2 sjmp 2531 goto 2531;

9 245f: ef,cH,04 call 292Zb Subl063 () s

9 2462: a2,20,30 1dw R30, [R20] R30 = [STACK]:

9 2465: f2 pushp push (PSW)

9 2466: fa di disable ints;

9 2467: 18,02,31 shrb R31,2 R31 = R31 / 4:

9 246a: c4,11,31 stb R11,R31 BANK_SEL = R31;:

9 246d: a3,20,04,26 1dw R26, [R20+44] R26 = [STACK+4]:

9 2471: b2,27,36 1db R36, [R26++] R36 = [R26++];

9 2474: b2,27,37 1db R37, [R26++] R37 = [RZ6++]:

9 2477: b2,27,38 1db R38, [R26++] R38 = [R26++]:

9 247a: b2,27,39 1db R39, [R26++] R39 = [R26++]:

9 247d: b2,27,3a 1db R3a, [R26++] R3a = [R26++]:

9 2480: b2,27,3b 1db R3b, [R26++] R3b = [R26++]:

9 2483: ae, 27,40 ldzbw R40, [R26++] R40 = (uns) [R26++]7

9 2486: bl,11,11 1db R11,11 BANK SEL = 11;

9 2489: f£3 popp pop (PSW) ;

9 248a: c3,20,02, 26 stw [R20+2],R26 [STACK+2] = R26;

9 248e: 99,ff,3a cmpb R3a, ff

9 2491: df,08 je 249b if (R3a == ff) goto 249b:
9 2493: bl,01,34 1db R34,1 R34 = 1

9 2496: c7,01,bc,17,34 stb [17bc],R34 [bOSC _BYTOP] = R34:

9 249p: c3,01,ba,17,36 stw [17ba],R36 [wOSC_ADDR] = R36;

9 24a0: 9b,01,bc,17,00 cmpb 0, [17bc]

9 24a5: d7,0a jne 24b1 if (0 != [bOSC_BYTOP]) goto 24bl;
9 24a7: a2,36,46 1dw R46, [R36] R46 = [R36]:

9 24aa: c3,01,b8,17,46 stw [17b8],R46 [bOSC _OVAL] = R46;

9 24af: 20,08 sjmp 24b9 goto 24b9;

Registers are not automatically set with ‘b’ or ‘w’, this is what | have in my own definition, because
EEC V strategies often share registers, and meaning at byte level is not the same than the one at
word level.

A binary end to finish.

SAD 8061 — 8065 / SAD806x

Strategy:
9 ff06: 4b,42,41,4e,37,48,34
KBANT7H4

9 ffod: 2e,48,45,58,2a,ff,00 Unknown Operation/Structure

Part Number:
9 f£f14: 58,53,37,56,41,4a,20
XSTVAJ

9 fflb: 2a,ff Unknown Operation/Structure

PATS Code:
9 f£fild: f£f,ff,ff,ff,ff,£f, £f, ££, £F, £, ££, £F, £, £f, £f, £, £f, £f, £, £f, £, £f, ££, £, £f, £
0 0 0 1 o 1 o e 0 1 1 1 A 1

9 ££37 -> ffe2 fill ff

Copyright:
9 ffe3: 43,6f,70,79,72,69,67,68,74,20,56,69,73,74,65,6f,6e,20,43,6£,72,70,2e,20,20,32,30,30,32
Copyright Visteon Corp. 2002

VIN Code:
9 ff80: f£f,ff,ff,ff,ff,£ff,£f,£f, £F, £F, £Ff, £F, £Ff, £f, £f, £f, £F

9 f£f91: £f, ff, ff,ff Unknown Operation/Structure
9 ££95: ff 0 VID Block Enabled

9 ff96: ff,ff,ff,ff Unknown Operation/Structure
9 ffSa: ff,ff 0 Tyre Revolutions per Mile

9 ff9c: ff,ff 0 Rear End Gear Ratio

9 ff9e -> fffe fill ff

9 ffff: 91 Unknown Operation/Structure

End of Disassembly

SAD 806x

SAD 8061 — 8065 / SAD806x

menu:

As described at the beginning of the document, all options are not available all the time. | will
not come back on these details, | will try to describe which actions are executed by each option,
because now, you probably better understand SAD 806x and how it is built.

File menu:

File | Disassembly = Output

Select

Binary ...

| Select

SAD 806x ...

Exit

KBAN7H4.56x
Save SAD 806x

‘Select Binary ..." option permits to show the open file dialog, to select the appropriate
rom to be disassembled. By default, SAD 806x will show ‘.bin’ files, but you can use any
file you want, at your own risks.

Selected rom will never be updated by SAD 806, it will use it as a read only file.

When file is selected it is directly loaded and its related SAD 806x definition file (*.s6x’)
too. A status appears to give the result.

‘Select SAD 806x ..." option permits to show the open file dialog, to select another SAD
806x definition file (“.s6x’), which will replace the default one. By default, SAD 806x will
show ‘.s6x’ files, but you can use any file you want, at your own risks. Name of the file

appears below the option, to be sure.

‘Save SAD 806x’ option permits to save the current definition, into the SAD 806x
definition file (“.s6x’). If the file is not existing, it creates it with its default name (same as
the rom one). Do not forget to save your file before closing application or before
switching to another rom.

‘Exit’ option will close the application.

SAD 8061 — 8065 / SAD806x

Disassembly menu:
Disassembly | Output
1| Disassemble ||

Nothing more to say on this menu, it has only one option and is available only for properly
loaded binaries.

‘Disassemble’ option will start disassembly process. Everything is done in memory, no

output is done at this level. A status appears to give the result, when disassembly has
finished. This process can take some time.

SAD 8061 — 8065 / SAD806x

Output menu:

Output

Tools 7

Text Output

KBANTH4 txt

Select File ...

Nothing more to say on this menu too, it has only one option and is available only after disassembly.
If you update the SAD 806x definition, you need to disassemble you binary with the new definition,
to be able to generate output another time.

‘Text Output’ option will create or overwrite a text file, with the disassembled code.
Everything is done, by the disassembled elements which are in memory. By default
outputted file will be in the same folder, with the same name than the binary. This
process can take some time.

File name text box is found below ‘Text Output’ option. It permit to see what the name of
the destination file is. When output is done, by double clicking on this text box, computer
default text editor will open the file.

‘Select File ..." option permits to show the open file dialog, to select another destination
file (“.txt’), which will replace the default one. By default, SAD 806x will show “.txt’ files,
but you can use any file you want, at your own risks. Name of the file appears before the
option, to be sure.

SAD 8061 — 8065 / SAD806x

Tools search menus:

Tools | 7

Search Objects Ctrl+F

Search Signature

Import/Export 3
Comparisons »
Hex Editor

Search options permit to search elements in definition or signatures in binaries.

‘Search Objects’ is available at any time and from anywhere through ‘Ctrl+F’ shortcut. It
permits to search in definition for anything, through a basic text search. This form will be
displayed.

Search Objects — O X

abc] >

~ Tables (0)
Functions (0)

+- Scalars (2)
Structures (0)

+- Routines (3)
Operations (0)
Registers (0)
Other Addresses (0)
Routines Signatures (0)
Elements Signatures (0)

All text fields present on elements will be parsed, including addresses, based on provided
search word which shoould be contained somewhere. The result will appear in list and by
selecting an item, it will be opened in main application.

Please notice, that when right clicking on the button, on the right, you can exectute
special searches.

1

Routines with Arguments |

Routines Advanced

‘Routines with Arguments’ will provide all routines which use input arguments and
‘Routines Advanced’, all routines set as advanced ones.

‘Search Signature’ is available when binary is properly loaded. It permits to search a
signature directly in binary (its hexadecimal text version), exactly like it is done on
disassembly for ‘Routines Signatures’ and ‘Elements Signatures’. Its second, but main in
fact, purpose is to validate a signature when writing one in signatures parts. This form
will be displayed.

SAD 8061 — 8065 / SAD806x

{## Search Signature - O X

HEAOPER A
88......

DS§.12

45,78.00......

8s......
D3,08
94
71,03...
DF.04

v
(-.{
- | €

) Bank 8 (1)
243e

Text box on the top is for the signature. Button in the middle is for searching and yellow
smiley, to help on writing signature (this is the ‘Elements Signatures’ help here) and the
list on the bottom, for the result.

Here you can see that the signature has matched at address 0x24ae on bank 8.
Multiple matches will appear, if this is the case.

SAD 8061 — 8065 / SAD806x

Tools Import/Export menus:
Tools ‘ ?

Search Objects Ctrl+F

Search Signature

| Import/Export ¢ m SADBOGx files » m Import Signatures
Comparisons » SAD files »
: TunerPro files »
Hex Editor

First Import/Export format is SAD 806x definition itself. For now | only see one thing
interesting to be imported massively from one SAD 806x definition to another, | am talking about
signatures, which are really shared between strategies. For other things, Copy and Paste work well
because it is working element by element and for everything else, the repository is perfect.

‘Import Signatures’ option permits to show the open file dialog, to select another SAD 806x
definition file (“.s6x’). By default, SAD 806x will show ‘.s6x’ files, but you can use any file you want, at
your own risks. Then it will add or update all signatures from selected definition file to the current
one.

For ‘Routines Signatures’, matching will be done on the ‘Short Label’.
For ‘Elements Signatures’, matching will be done on the ‘Short Label’ of the defined element.

Tools | 7

Search Objects Ctrl+F

Search Signature

| Import/Export b | saDgO6xfiles »
Comparisons » | SAD files ’ || Import SAD Dir file
TunerPro files » i
Hex Editor ! Import SAD Cmt file
Export SAD Dir File Part

Another Import/Export format is for SAD itself. It will manage definitions (.dir files) and
comments (.cmt files). The goal is to import as many things as possible, when definition or comments
were written for SAD.

‘Import SAD Dir file’ option permits to show the open file dialog, to select a SAD definition
file (“.dir’). By default, SAD 806x will show ‘.dir’ files, but you can use any file you want, at your own
risks. Then it will add or update elements based on the address declared in SAD definition.

If nothing exists at the related address and if element is properly declared in SAD definition, SAD
806x will have no issue to create it at the right place, otherwise it will try to identify it based on
address and finally, if it has no correspondence, all interesting details will be put in an ‘Other
Address’. If something is already declared at the address, it will be overwritten, if it has the same
type, otherwise it will be ignored.

Only calibration elements (scalars, functions, tables, and structures), operations, routines and
registers are imported. Vectors are not managed.

SAD 8061 — 8065 / SAD806x

It is a huge text processing, so prefer to backup you SAD 806x definition before doing it, to permit to
go back if required. The process works better, if binary is disassembled before.

‘Import SAD Cmt file’ option permits to show the open file dialog, to select a SAD comments
file (“.cmt’). By default, SAD 806x will show ‘.cmt’ files, but you can use any file you want, at your own
risks. Then it will add or update elements based on the address declared in SAD comments.

If nothing exists at the related address, SAD 806x has no way to know what is the type of the
element, so it will be put in an ‘Other Address’. If something is already declared at the address,
comments will be overwritten.

It is a huge text processing too, so prefer to backup you SAD 806x definition before doing it, to
permit to go back if required. The process works better, if binary is disassembled before and SAD
definition file has been imported before comments.

‘Export SAD Dir File Part’ option permits to show the save file dialog, to select a SAD
definition file (“.dir’). By default, SAD 806x will show ‘.dir’ files, but you can use any file you want, at
your own risks. Then it will create or overwrite file with compatible elements coming from SAD 806x.
This is not a synchronization process, SAD 806x will try to generate all compatible elements in a SAD
definition file which is initialized by default with classical SAD definition header. It has to be reviewed
properly before being used by SAD.

Only calibration elements (scalars, functions, tables, and basic structures), operations and routines
are exported.

Just backup you SAD definition before doing it, otherwise elements not managed by SAD 806x will be
lost.

Tools | ?

Search Objects Ctrl+F

Search Signature

| Import/Export » SADS06x files »
Comparisons » SAD files 3
TunerPro files » -
Hex Editor Import/Sync Xdf file

Export/Sync Xdf file

Reset Uniqueld for new export

The most important Import/Export format is TunerPro definition itself. Where SAD 806x
permits to quickly and properly prepare a definition, TunerPro can use one to update a binary file. So
it is essential to be able to synchronize SAD 806x and TunerPro definition, at least for Ford EEC
managements.

- ‘Import/Sync Xdf file’ option permits to show the open file dialog, to select a TunerPro
definition file (“.xdf’). By default, SAD 806x will show ‘.xdf’ files, but you can use any file
you want, at your own risks. Please check that TunerPro definition is not locked/crypted
before using it.

Then it will add or update all compatible elements (definition properties, scalars, bit
flags, functions and tables). When SAD 806x definition has always been synchronized,
XDF Uniquelds are stored in SAD 806x definition and it will try to match on it. When

SAD 8061 — 8065 / SAD806x

Uniqueld does not exist or is not found, it tries to match on ‘Short Label’. But as you
probably know, TunerPro does not use a ‘Short Label’, so SAD 806x tries to decompose
TunerPro label into <‘Label’ — ‘Short Label’ *> or TunerPro description into <’Short Label’
— ‘Label’ *> and then matching is done on found ‘Short Label’ if one. As you will see the
TunerPro description <’Short Label’ — ‘Label’ *> will be the best compatibility basis, with
SAD 806x comments <’Short Label’ — ‘Label’ *>. Matching elements will be overwritten in
SAD 806x definition, so it can be a good idea to backup it before processing.

Process can take some time. Some elements will not match because of their type, so a
message will give their list. Duplicated addresses are now managed in SAD 806x, so they
will be processed on import.

- ‘Export/Sync Xdf file’ option permits to show the save file dialog, to select a TunerPro
definition file (“.xdf’). By default, SAD 806x will show ‘.xdf files, but you can use any file
you want, at your own risks. Please check that TunerPro definition is not locked/crypted
before using it. A backup is done before processing for TunerPro definition, but it can be
a good idea to do it for SAD 806x definition, you will understand why.

Then it will firstly match elements (by XDF Uniqueld or by ‘Short Label’) inside SAD806x
definition and finally, it will add or update all compatible elements in TunerPro definition
(definition properties, scalars, bit flags, functions and tables), but all non-compatible
elements (categories, patches, ...) will stay intact in definition. Matching elements will be
overwritten in TunerPro definition, new elements will be created and their XDF
Uniquelds will be set in related SAD 806x elements, so you can understand, that it could
be a good idea to backup SAD 806x before processing.

Process can take some time. Duplicated addresses are now managed in SAD 806x, so
they will be processed on export.

- ‘Reset Uniqueld for new export’ option permits to empty this XDF Uniqueld on all
elements in SAD 806x definition. It is interesting to do it, when it has already been
synchronized and when exporting to a new TunerPro definition. Then new XDF Uniqueld
will restart from the beginning, taking the address order, so TunerPro definition, will be
sorted by address. Same thing when importing from a different TunerPro definition, it
permits to prevent mismatching, but | do not think it has to be done from different
TunerPro definitions, it is not a good idea.

From my experience, | can say, that my referential for a definition is now a SAD 806x one. TunerPro is
at the end of the loop, when it is required to update the binary and when definition is advanced
enough to do it. All my work is done directly in SAD 806x for definition part and | create a new
TunerPro definition when needed. Patches and other things are duplicated from previous TunerPro
definition version if necessary.

Tools Comparisons menus:

Tools | ?

Search Objects

Search Signature

Ctrl+F

Import/Export »
Comparisons > Binaries Comparison (Same definition)
Hex Editor Binaries Comparison (Different definition)

SAD 8061 — 8065 / SAD806x

SAD 806x Comparison (Same Binary)

Routines Comparison » I Export Skeleton

Calibration Chart View Compare Skeletons

Compare Binaries

About...

Comparisons menu contains all required tools to compare binaries between them and definitions
between them. It can be done through different ways, which | will try to explain.

‘Binaries Comparison (Same definition)’ option permits to compare 2 binaries (including
the current disassembled one) and to see which elements have been modified between
them. This comparison has to be used when both binaries are using the same definition,
in fact the same strategy, even if strategy version is different. Differences are only
detected for known elements at their known addresses. Current definition has not to be
really advanced to do it. If you want more it has to be done with a hexadecimal editor or
with the text output inside a text editor.

It opens this form:

&8 Compare Binaries — O X

Select Binary to compare
Result gives differences

- Table 035
- Table 036
- Table 037
- Table 046
- Table 047
i i.Table 053
Functions (0)
i... Scalars (0)
i Structures (0)
‘... Routines (0)

The ‘Select Binary to compare’ button will show the open file dialog, to select a binary
file. By default, SAD 806x will show ‘.bin’ files, but you can use any file you want, at your
own risks. Then it will directly compare current binary, with the selected one and it will
output known elements detected in difference, in its result list. With mouse over an
element, you will have some information, when selecting it, you will open it in main

SAD 8061 — 8065 / SAD806x

application. Differences are not detailed, for now it is required to open binary in another
SAD 806x session.

‘Binaries Comparison (Different definition)’ option permits to compare 2 binaries
(including the current disassembled one) and to see which elements have been modified
between them. This comparison has to be used when both binaries are not using the
same definition, not the same strategy, but when they are somehow identical, like for
example the same engine on 2 different strategies or a Ford EEC update which has
changed the strategy code. Differences are only detected for known elements, based on
their ‘Short Label’, so which should exist in both definitions. Both definitions have to be a
bit advanced to do it.

It opens this form:

Compare Binaries (differen... — O X

Select Binary to compare

OL Stabilized Fuel Table®
Heater Tip Temp
=} Functions (3)
Peak Load Scaling Sealevel (ISC_PERLOAD)
ATMR3 Scaling - FNO18H
VSS Limiter (FN396A)
—J- Scalars (6)
Injector Timing SW (1 on 2)
TQ Limit RPM Set (on)
TQ Limit RPM Clear (off)*
Min VS/0SS TQ Ratio
TQ_VS Upper Limit (on)
TQ_VS Lower Limit (off)
Structures (0)
Routines (0)

The ‘Select Binary to compare’ button will show the open file dialog, to select a binary
file. By default, SAD 806x will show ‘.bin’ files, but you can use any file you want, at your
own risks. Definition related with selected binary should be in the same folder and
should have the same name, with ‘.s6x’ extension. Then, it will load selected binary,
disassemble it (it takes some time), based on its linked definition and it will compare
current binary, with the selected one and it will output known elements, with same
‘Short Label’ detected in difference, in its result list. With mouse over an element, you
will have some information, when selecting it, you will open it in main application.
Differences are not detailed, for now it is required to open binary in another SAD 806x
session.

‘SAD 806x Comparison (Same Binary)’ option permits to compare 2 SAD 806x definitions
(including the current opened one) and to see which user defined elements have a
different definition or are not defined. It is useful to see what has changed between 2
versions. On my side | use it to see what has changed between 2 TunerPro definitions, it
requires to create a new SAD 806x definition, import the new TunerPro definition and
then to compare. This comparison has to use a common basis, which is the binary or a
compatible one with same strategy. Differences are only detected for defined elements
in one definition or in the other, based on their addresses. At least one definition has to
be a bit advanced to do it.

SAD 8061 — 8065 / SAD806x

It opens this form:

Compare SAD 806x - O X

Select SAD 806x to compare
_ Result gives differences
=~ Missing In Compared (0)

- Tables (0)
- Functions (0)
- Scalars (0)
- Structures (0)
=8 Differences (0)
- Tables (0)
- Functions (0)
- Scalars (0)
- Structures (0)
=}~ Missing In Source (488)

11 Tables (38)

#- Functions (179)

+- Scalars (211)

.. Structures (0)

The ‘Select SAD 806x to compare’ button will show the open file dialog, to select a SAD
806x definition file. By default, SAD 806x will show “.s6x’ files, but you can use any file
you want, at your own risks. It will compare current definition, with the selected one and
it will output each element in difference, in its result list. First part ‘Missing In Compared’
is for elements which are existing in current definition, but not in selected one, the last
one ‘Missing in Source’ is the opposite and ‘Differences’ part shows differences when
elements exist on both sides and are a bit different (based on a defined set of properties
for each type of element). Managed elements are ‘Scalars’, ‘Functions’, ‘Tables’ and
‘Structures’. With mouse over an element, you will have some information, when
selecting it, you will open it in main application, if it exists in current definition.
Differences are not detailed, for now it is required to open definition in another SAD
806x session. In this case current definition was empty, compared to a well advanced
one.

‘Routines Comparison’ menu permits to access some interesting options. For now
comparisons tools have permitted to compare relatively closed things, which is for sure
necessary, but it does not help to advance on a proper disassembly which is globally
unknown at its start.

‘Routines Comparison’ will permit to compare code from routines between current
binary (and its definition) and another one (and its definition too), but without real link
between them, it is for example possible to compare EEC IV binaries and EEC V binaries.
As you probably know it, the more near in time the binaries are, the more near will be
their routines.

If you are able to match one routine from one binary, where you have identified used
elements and/or register, with another routine from another binary, you will be able to
match used elements and registers too. This is the goal here.

To compare routine quickly and properly, the best way, another time was to use
hexadecimal code. But no signature to write here, it is somehow automatic. The
complete code inside the routine is not used, it is a skeleton, which is used. This skeleton
is composed with instructions only, sometimes modified to get better results, so it is

SAD 8061 — 8065 / SAD806x

some kind of signature, with only instructions. You can see an example, because you can
export one through ‘Export Skeleton’ into a text file.

Then skeletons from one binary are compared to the other, routine by routine. The
method used is to calculate the proximity between routines skeletons, through the
Damerau-Levenshtein distance algorithm. Below a number of operations, some routines
are ignored, over a certain distance routines are managed as different and when
everything is inside values routines are managed as matching.

‘Export Skeleton’ option permits to show the save file dialog, to select a skeleton file
(“.skt’). By default, SAD 806x will show ‘.skt’ files, but you can use any file you want, it is a
text file. Skeleton will be generated from current disassembled binary, but will only store
routines, their details, their code, but not their elements.

This skeleton file can be reused at any time with the next option.

‘Compare Skeleton’ option permits to compare routines skeleton, based on current
disassembled binary and another one, which was saved previously from another
disassembled binary, through ‘Export Skeleton’ option.

It opens this form, which is the ‘Compare Routines’ form:

{#8 Compare Routines — O X
| Select Skeleton |
Skeleton file KBANT7H4 224 skt
Minimum Operations Count 3
Count Gap Maximum Tolerance % 10
Distance Minimum Tolerance % 7
Compare

Result gives possible matchings

I

‘Select Skeleton’ button will show the open file dialog, to select a previously saved
skeleton file (“.skt’). By default, SAD 806x will show ‘.skt’ files.

‘Skeleton file’ text box will show you name of the selected file.

‘Minimum Operations Count’ number, defaulted, is the minimum number of operations
in a routine to permit to compare it. Below this number, routine will be ignore.

‘Count Gap Maximum Tolerance %’ percent, defaulted, is the maximum gap, for

SAD 8061 — 8065 / SAD806x

operations number in routines, presented as percent, between 2 routines to be
compared. Over this percent, routines will not be compared to each other. At 10%, a
routine with 90 operations will be compared to another with 100 operations, but same
routine will not be compared to a routine with 110 operations.

‘Distance Minimum Tolerance %’ percent, defaulted, is the Damerau-Levenshtein
distance, presented as percent, between 2 compared routines. Let say that 100% is for
fully identical routines and 0% for nothing similar between both routines. Below given
value, routines are considered as different and over they are considered as matching.
‘Compare’ button, will start the process, it will generate routines skeletons for current
disassembled binary and then it will compare it to provided skeleton file, based on given
parameters.

{#8 Compare Routines — O X

Select Skeleton
Skeleton file KBAN7H4 224 skt
Minimum Operations Count 3

Count Gap Maximum Tolerance % 10

Distance Minimum Tolerance % 7

Compare
Result gives possible matchings

« Intermupt Software 9 A
- Sub0043
~ Sub0044
- Sub0045
- Sub0046
. -02158 - Sub0043

- 0 2174 - Sub0044

0 219U~1 Chances : 100,00 |
. w0 21ac - SGb0046
-)- BGS_SCHEDULER/RASTER_INTERRUPT/INTERUPT_1F
. . 021c8 - Sub0047
#- Sub0048
%0231
SR SUBR_GASP_INIT_ENTRY|
- L. () 236 - Sub0050
#- 0 24a1 9

Export report

T [O O

'Result’ appears in results list part. With ‘Compare Skeleton’ option, it is only possible to

give routines as result and then to analyze them one by one in disassembly. The more
you have matching routines, the nearer are you binaries or strategies. If you put your
mouse over a routine or a matching routine, you will see additional details, like ‘%
Chances’ which is the opposite of the Damerau-Levenshtein distance, presented as
percent (100% is the best proximity). By clicking on a routine, it will be shown (if
declared) in main application. Result could give routines which are not visible in one
definition or another, because it is not exactly the main routines which are used for
comparison, so in this case routine will appear with its address only, without a ‘Short
Label’. When you see a multiple matching, often for small routines, it is a bit more
complicated to choose one.

SAD 8061 — 8065 / SAD806x

‘Matching Element’ menu is available by right clicking on a routine or its matching
equivalent.
=} Routines (1092)

+)- Bank 0 Start

—J- Interrupt Software 0

0 20e1 - IPT_Software_0 - Intermupt Software 0
+)- Intermupt Software 5 | Import Element

+- Sub0043
Only one option is available, ‘Import Element’, which permits to copy values from the
matching equivalent to the one on the current definition. For ‘Routines’, only ‘Short
Label’ and ‘Label’ are copied, for security reasons. If menu was shown from current
definition routine, but with multiple matchings, it will do nothing, it works only when it is
a single matching.
‘Elements Category’ menu is available by right clicking on a category, here we have only
‘Routines’ one which is available.

=8 Routines (10
+- Bank 0 ¢ Expand All
+- Intermupt Collapse All
+- Intermupt) .
- Sub 0043 Filter on defined Elements
+- Sub0044 Filter on Short Label Difference
: gzgx; Filter on unique matching
+-BGS_SC Import secured elements only
+- Sub004

‘Expand All’ and ‘Collapse All’ options are easy to understand at this level.

‘Filter on defined Elements’ is a checkbox, which will reduce number of elements in list,
on fact that they are user defined (something was updated on them by someone, and
saved in definition, it is not automatically generated). It permits to remove from list non
interesting elements.

‘Filter on Short Label Difference’ is a checkbox, which will reduce number of elements in
list, on fact that the ‘Short Label’ has to be different between current definition routine
and its matching equivalent. It permits to remove from list, already copied elements.
‘Filter on unique matching’ is a checkbox, which will reduce number of elements in list,
on fact that they have only one matching equivalent. It permits to remove from list, non-
sure elements.

‘Import secured elements only’ option will do the same thing than ‘Import Element’ at
element level, but here on the whole category, ‘Routines’ in this case. It will apply on all
elements compatible with selected filters, but ‘secured’ means, that in all cases, it applies
on defined elements and unique matching only, with or without these filters checked.
‘Export report’ button will show the save file dialog, to select an output file for the text
report, which will contains the same thing than the shown result. It permits to easily
switch between text report, disassembled text outputs and SAD 806x when updating
definition and it permits to keep a trace too.

‘Compare Skeleton’ is a good starting, point, but is not automatic enough, compared with
the next option.

‘Compare Binaries’ option is a kind of all in one process, which cumulates disassembly,
skeleton export and skeleton comparison, but with the whole range of analyzed
elements, because everything from both disassembled binaries is in memory, in the same

SAD 8061 — 8065 / SAD806x

session. Except that, use is really near ‘Compare Skeleton’.

#8 Compare Routines — O X
| Select Binary |
Binary/S6x file(s) KBAN7H4 224 BIN / KBAN7H4 224 s6x
Minimum Operations Court 3
Count Gap Maximum Tolerance % 10
Distance Minimum Tolerance % 70
Compare

Result gives possible matchings

[

‘Select Binary’ button will show the open file dialog, to select a binary file. By default,
SAD 806x will show “.bin’ files.

‘Binary/S6x file(s)’ text box will show you name of the selected binary file and if it has an
available SAD 806x definition (.s6x) file, with the same name in the same folder.
‘Minimum Operations Count’, ‘Count GAP Maximum Tolerance %’ and ‘Distance
Minimum Tolerance %’ are exactly working in the same way than with ‘Compare
Skeleton’.

‘Compare’ button, will start the process, but in this case, the first step is to disassemble
selected binary, which will take some time, then it will generate routines skeletons for
both disassembled binaries and then it will compare them, based on given parameters.
At this moment, in memory we have matching routines between one binary and the
other, like it was the case with ‘Compare Skeleton’, but the process will now continue.
For surely matched routines (unique matching only), it will try to find matching elements
(scalars, functions, tables, structures) and matching registers, at the same place or with
the same tolerance and everything will be proposed as result.

SAD 8061 — 8065 / SAD806x

#8 Compare Routines — O X
Select Binary
Binary/S6x file(s) KBAN7H4 224 BIN / KBANTH4 224 sbx
Minimum Operations Count 3
Count Gap Maximum Tolerance % 10
Distance Minimum Tolerance % 70
Compare
Result gives possible matchings

8 Tables (95)
- Functions (197)
- Scalars (205)
- Structures (16)
Er- Routines (16)

[#- Registers (323)

Export report

'Result’ appears in results list part too. With ‘Compare Binaries’ option, result can now
contain routines, scalars, functions, tables, structures and registers. The more you have
matching routines, the nearer are you binaries or strategies.

For ‘Routines’, if you put your mouse over a routine or a matching routine, you will see
additional details, like ‘% Chances’ which is the opposite of the Damerau-Levenshtein
distance, presented as percent (100% is the best proximity). By clicking on a routine, it
will be shown (if declared) in main application. Result could give routines which are not
visible in one definition or another, because it is not exactly the main routines which are
used for comparison, so in this case routine will appear with its address only, without a
‘Short Label’. When you see a multiple matching, often for small routines, it is a bit more
complicated to choose one.

SAD 8061 — 8065 / SAD806x

&8 Compare Routines — O X
Select Binary
Binary/S6x file(s) KBAN7H4 224.BIN / KBAN7H4 224 s6x
Minimum Operations Count 3
Count Gap Maximum Tolerance % 10
Distance Minimum Tolerance % 70
Compare
Result gives possible matchings
- Tables (95) “
=R Table 003
. - Load at Sealevel (LWFM)
EI Table 004 Occumences - 1
[+~ Table 005 Colums : 10
i Table 006 Rows : 10
El Table 015 Unsigned Byte Table
- Table 1260c
(- Table 016 FN1036A
[+ Table 017
(- Table 018 FN1036A - Load at Sealevel (LWFM)
- Table 019 Load at Sealevel (LWFM)* - FN1036A RPM vs Load
#- Table 020 LOAD AT SEA LEVEL FOR N VS TP_REL
[#- Table 021
- Table 022 PURPOSE: COMPUTE INFERRED BP
- Table 023 .
: X INPUT: NORMALIZED RPM - FNO70E
(- Table 024 o v
' Y INPUT: NORMALIZED TP_REL - FNDO44
_ OUTPUT: SEA LEVEL EQUIVALENT LOAD

For other elements and registers, if you put your mouse over an element or a matching

element, you will see additional details, like ‘Occurrences’ which tells you how many
times, this matching was detected in all routines. By clicking on an element, it will be
shown in main application.
‘Matching Element’ menu is available by right clicking on a element or its matching
equivalent.
(- Routines (1092)

E| Bank 0 Start

E| Intemupt Software 0

S 0 20e1 - IPT_Software_0 - Intemupt Software 0
EI Intemupt Software 9 | Import Element |
EI Sub0043

Only one option is available, ‘Import Element’, which permits to copy values from the
matching equivalent to the one on the current definition. For ‘Routines’, only ‘Short
Label’ and ‘Label’ are copied, for security reasons, for other elements and registers, all
properties are copied. If menu was shown from current definition element, but with
multiple matchings, it will do nothing, it works only when it is a single matching. A
message could appear, when something is not clear, like a different type or a different
number of rows or columns, to validate or cancel copy.

‘Elements Category’ menu is available by right clicking on a category.

SAD 8061 — 8065 / SAD806x

+- Bank 0 ¢ Expand All

- Intermupt Collapse All

+- Intermupt) .

- Sub 0043 Filter on defined Elements

+- Sub0044 Filter on Short Label Difference
: g:gx; Filter on unique matching
+-BGS_SC Import secured elements only
+- Sub004

‘Expand All’ and ‘Collapse All’ options are easy to understand at this level.

‘Filter on defined Elements’ is a checkbox, which will reduce number of elements in list,
on fact that they are user defined (something was update on them by someone, and
saved in definition, it is not automatically generated). It permits to remove from list non
interesting elements.

‘Filter on Short Label Difference’ is a checkbox, which will reduce number of elements in
list, on fact that the ‘Short Label’ has to be different between current definition routine
and its matching equivalent. It permits to remove from list, already copied elements.
‘Filter on unique matching’ is a checkbox, which will reduce number of elements in list,
on fact that they have only one matching equivalent. It permits to remove from list, non-
sure elements.

‘Import secured elements only’ option will do the same thing than ‘Import Element’ at
element level, but here on the whole category. It will apply on all elements compatible
with selected filters, but ‘secured’ means, that in all cases, it applies on defined elements
and unique matching only, with or without these filters checked. In addition when
something is not clear, like a different type or a different number of rows or columns or a
register with different byte/word meaning, it is managed as unsecured and ignored too.
‘Export report’ button will show the save file dialog, to select an output file for the text
report, which will contains the same thing than the shown result. It permits to easily
switch between text report, disassembled text outputs and SAD 806x when updating
definition and it permits to keep a trace too.

‘Compare Binaries’ is a great add on, to quickly identify elements between binaries and
import their definitions, but do not try to go too fast.

‘Calibration Chart View’ ’ option permits to compare 2 binaries (including the current
disassembled one) visually on a 2D chart. It permits also to see only current binary and to
visually identify its elements, which is possible for some advanced people. It will open its
related form:

SAD 8061 — 8065 / SAD806x

@8 Calibration Chart View - KBAN7H4 224.BIN / KBAN7H4 224.56x / KBAN7(H4) = m) X

File

= KBAN7H4 224 BIN - KBAN7(H4)

As you can see here, it is a basic 2D chart reflecting the hexadecimal values. It is locked to
the real calibration addresses, related with RBases, as it should be. For sure you can
zoom and unzoom, by using the mouse wheel.

Interesting thing here, is that elements present in disassembled binary are printed as
legend. With mouse over a known element, you will see other details and by clicking on
it, it will be shown in main application.

By right clicking on the chart, you can access to some options.

Style » Point
Color 4 FastPoint

Backcolor » Line

UL

StepLine
FastLine

Bar

StackedBar

Column

FH 1030
LRLEL Y

FNRF SSFF
eurp T o fOh
FNRF LINEAR
F 144 1

g ania

StackedColumn
Area
StackedArea
Stock
Candlestick
Range
RangeBar
RangeColumn
BoxPlot
ThreelineBreak
Kagi

PointAndFigure

= T Ll
| will not detail them, because it is related with everything possible here and your own

SAD 8061 — 8065 / SAD806x

habits, but you can change style (some styles are a bit slow), main color and back color.
Now by using the menu, you have access to main things:

File |
| Disassemble Comparison Binary |

Close

For sur you can close this form, with ‘Close’ option, but the interesting one is
‘Disassemble Comparison Binary’. It will show the open file dialog, to select a binary file.
By default, SAD 806x will show “.bin’ files. Then it will load it with its default SAD 806x
definition (.s6x, with the same name in the same folder), disassemble it in memory
(which can take a bit time) and finally it will show the result.

@8 Calibration Chart View - KBAN7H4 224.BIN / KBAN7H4 224.56x / KBAN7(H4) VS KBAN2HB Kess.bin / KBAN2HB Kess.s6x / KBAN2(HB) = a X

File

—— KBAN7H4 224 BIN - KBAN7(H4)

[T M=
FnO31]
Fn032)
Fn033
Fn034
NS
NO4
FNOT0E| =
FNO77)
FNO78
FN1036A
FN1037
FN1039
040

FNRF_BOIL|

FNRF_SSFF|
FNFP_IR_DROP)

FNRF_LINEAR

<
te—
=

”l AL T W@MN

FNO78)
FN1036A
FN1037|

FN1OX
FNRF_SSFF
FNRF_BOIL

FNFP_IR_DROI

FNRF_LINEAR|

Now you can compare both binaries and for sure you change style and colors too.

SAD 8061 — 8065 / SAD806x

Tools Hex Editor menu:

Tools | 7

Search Objects Ctrl+F

Search Signature

Import/Export »

Comparisons »

| Hex Editor ||

Hex Editor is more a hexadecimal viewer than anything else, because like other things with SAD 806x,
nothing is done to modify the opened binary and you, like me, probably know excellent hexadecimal
editors, which permit to really edit binaries. So it opens this form:

&8 Hex Editor — l X
Offset Oa;:e‘k 00 01 02 03 04 05 06 07 08 05 OA 0B OC OD OE OF Ascii .
02000 FF FA 27 FE FF FF FF FF FF FF FF FF FF FF FF FF O DY
00010 02010 60 20 63 20 66 20 69 20 6C 20 6F 20 72 20 75 20 *efiloru
00020 02020 78 20 7D 20 82 20 87 20 8C 20 91 20 9% 20 9B 20 x }
00030 02030 AD 20 A5 20 AB 20 AA 20 AF 20 B4 20 B9 20 BE 20 ¥ - a1y
00040 02040 C3 20 C8 20 CD 20 D2 20 D7 20 DC 20 E1 20 E3 20 AEfOxTas
00050 02050 E5 20 E7 20 ES 20 EB 20 FO 20 F5 20 FA 20 FF 20 dgéeasdsuy
00060 02060 E7 51 29 E7 53 29 E7 5 29 E7 59 29 E7 5C 29 E7 cQgSigVigYigh)g
00070 02070 5F 29 E7 62 29 E7 65 2% 10 01 E7 A3 BD 10 01 E7 _)gb) ge)ligelle
00080 02080 SE BD 10 01 E7 99 BD 110 01 E7 94 BD 10 01 E7 8F gl
000S0 02050 BD 10 01 E7 8A BD 10 01 E7 85 BD 10 01 E7 80 BD Hlcllcydllcs
000AD 020A0 10 01 E7 7B BD E7 5D 36 20 5F 10 01 E7 71 BD 10 Desele _Negd
000BO 02080 01 EV 6 BD 10 01 E7 67 BD 10 00 EZ7 62 BD 10 M le1vdlicgidich <l
000CO 020C0 E7 5D BD 10 01 E7 58 BD 10 01 E7 53 BD 10 01 E7 g1Hlexrdlesille
000D0 02000 4E BD 10 01 E7 49 BD 10 01 E7 44 BD 10 01 E7 3F WdlleTalicDlle ?
OO0ED 020E0 BD 21 2D 20 73 20 8D 20 A7 20 C1 10 01 E7 30 BD - 5§ Allgis
000FO 020F0 10 01 E7 2B BD 10 01 E7 26 BD 10 01 E7 21 BD 20 Dg+llgatslc 13
00100 02100 C7 FF FF FF 3A 0OA 06 F3 F1 F2 32 0A F4 C9 EA 2B Cyyv:lond26EE+
00110 02110 C4 4A 13 CO 48 06 98 4A 13 D7 F5 BO 4A CF 48 OE EonAnmatx5° Jiml
00120 02120 48 CB 48 CB 48 C9 B8 00 CF BO DO D1 BO OD DO 54 HEHEHE | I°BH°D
00130 02130 DO D1 70 OC D1 30 D1 03 EF 76 0B 37 D1 05 10 08 BRpaNORIL7HI
00140 02140 EF 6B 6B 36 D1 OC EF D4 0A 35 72 06 37 72 03 ¢ ikkeRaidscl7=l ~

It is useful for some reasons, it permits to see hexadecimal code, for bad binaries and to understand
what is wrong (often on the first 16 bytes), but it is also the only editor able to give a bank address.
‘Offset’ is the address inside the binary, ‘Bank Offset’ is the address inside the bank, beginning with
the bank number itself.

Another interesting thing is the ability to copy hexadecimal code (for signatures or other things), by
right clicking on selected part or using ‘Ctrl-C’ shortcut.

BD

Just a required tool.

I Copy Ctri+C

58 BD

SAD 8061 — 8065 / SAD806x

Help Repository menus:

?

Repository » m

About...

Registers

Tables
Functions
Scalars

Structures

Units

Conversion

SAD 8061 — 8065 / SAD806x

The ‘Repository’ menu permits to create or update the available repositories. Everywhere when
creating definitions for elements, you can get information coming from the repository, based on
where you are at this moment, through the ‘Ctrl-R’ shortcut, to enrich you definition. Repository is
composed with xml files, in the SAD 806x folder. If they are not present, you can create them from
here, globally all repositories are working in the same way, with small differences. By clicking on the

related option, the right form will open.

- ‘Registers’ repository:
‘Repository search’, to find an item, just use a word and press enter.

&8 Registers j

/ Save

‘Repository list’, to show the list of items in repository.

This repository is for now empty, to add a new item, use ‘Ctrl-N’ shortcut or simply right

click on ‘Repository list’, to display this menu:

Add Ctrl+N

Remove

SAD 8061 — 8065 / SAD806x

As result, you will have a new item created and defaulted, here a register and you are
now able to update its properties.

{8 Registers \ - O X

1Label

{NEW
Comments
Information

Save

Registers in repository have only a ‘Label’, ‘Comments’ and ‘Information’. As you have
understood, when used from main application, this repository item will publish its ‘Label’
and ‘Comments’ on the register worked in application. ‘Information’ is only details inside
repository. Name which appears in list is a syntetic version of interesting details on these
properties.

To save the new or updated item, simply use the ‘Save’ button.

As you have seen in small menu, you can remove an item with ‘Remove’ option.

When a proper SAD 806x definition is loaded, a new option is available in this menu.

Add Ctrl+N

Remove

Load from Sbx

‘Load from S6x’ option permits to directly enrich repository, based on current SAD 806x
definition. Do no forget to save after this.

SAD 8061 — 8065 / SAD806x

{8 Registers

Label

DP_ERRF

WR_BIAS_PROP1 | [
wR_BIAS_PROP2 C

wR_BIAS1
wRANNUM
wRATEA_PKTS
wRATKAM
wRBIAS_LNTMR2
wREF_DELTA_EXT
wRF_DC
wRF_DP_ACTUAL
wRF_DP_ERR
wRF DP_ERRDOT
wRF _DP_ERRF
wRF_DP_ERROLD

wRF_DP_ERRSUM Information

wRF_DPACT_MR
wRF_DPERR_MR
wRF_DPERROLDF
wRF_DPREF
wRF_DPSLOPE
wRF_FF_X_FILT
wRF_FF_Y_FILT
wRF_MAP

wRF_X
wRF_XFILT
wRF_Y
wRF_YFILT
wRFS_HS_COMP
wRFS_LS_COMP
wRFS_OFF_COMP .

Save

‘Elements’ repositories (for tables, functions, scalars and structures):

¥ Tables

Short Label

TNi000 | [FN1052

FN1023B Label

FN1036A [VE Correction Manfold Fil

FN1036B e

Emgggc FN1052 - VE comection manifold fill

FN1039

FN1135B

FN1052
Em }2?/\ ECT ACT Manifold filling fitter cold comection

FN1142 PURPOSE: Manifold filling Calculation
EN1148A X INPUT: NORMALIZED ACT - FN022V
FN1149A Y INPUT: NORMALIZED ECT - FN022V
FN1301E OUTPUT: CORRECTION FACTOR

FN1315

FN1052 - Used in the calculation of the background aircharge value to compensate for the

difference in volumetric efficiency due to heat transfer effects.

FN1325 .
FN1327A Information

FN1329A
FN1338
FN1348
FN1351ETD
FN1352
FN1353E1
FN1360
FN1361L
FN1361LA
FN1361X
FN1362LX
FN1362X_LOST ¥

Save 7“

Exactly the same principle hefe, but with a ‘Short Label’ in addition, which will be used

for filling ‘Short Label’ field on elements.
Same options are available, including, ‘Load from S6x’.

‘Units’ repository:

SAD 8061 — 8065 / SAD806x

B Units

Label

Counts ~
crank deg

CrkDgr

Cts

Cubic Inches

DC

deg F

Deg F

DegAdv

degrees
Degrees
DegVVT

DelPr

Delta_TP
DELTAP
DevWWT
DNDT_START
DSDRPM

Duty Cycle
ECT

EDF_PPM
EGO_HTR_DC
EGRACT

ERR_STRT

EXR_CMD

EXT_CMD F

EXT_FEU

F Temp

FanTmr
FlowRate v

DSDRPM

Comments

Information

Save

‘Load from S6x’ is still available, ‘Label’ will be used for filling ‘Units’ fields on elements,
‘Comments’ is for repository only.

‘Conversion’ repository:

& Conversion Repository

Title

Cubic Inch to Cubic Centimeter
Cubic Inch to Liter

Pres. Barto Psi

Rpm. Standard

Speed. Km/h to Mph

Speed. Mph to Km/h

Temp. Cto °F

Temp. ‘Fto C

Volts. 12800

Without

lPres. Psi to Bar

Intemal Formula

[x/14.504

Comments

Information

Save

This one is a bit different, no ‘Load from S6x’ is available, for quality reasons.
It possesses a ‘Title’ as information and an ‘Internal Formula’ which will be used for filling

SAD 8061 — 8065 / SAD806x

‘Scale’ fields on elements or to directly add an additional conversion level on diplayed

data.

SAD 8061 — 8065 / SAD806x

SAD 806x command line options:

Most important part of the work, which you will do with SAD 806x, will essentially be on
definitions setup, but sometimes it can be useful to do mass disassembly for, for example, finding a
strategy name, by having only the EEC catch code or its part number. A mass disassembly is also
interesting for me to detect issues on some binaries, when testing a new version of this tool.

So yes, SAD 806x can do some things from command line, even if it stays really limited.

These are the syntaxes to be used:

C:\SAD806x>SAD806X .exe "C:\SAD806x\BIN\KBAN7H4 .BIN"

It opens application with the related binary and its default SAD 806x definition, if it exists in the same
folder, here it should be ‘C:\SAD806x\BIN\KBAN7H4.s6x’.

C:\SAD806x>SAD806x.exe -D "C:\SAD806x\BIN\KBAN7H4.BIN"

Same thing than previously, but it starts directly the disassembly, application can be used after this.

C:\SAD886x>SAD866x.exe -0 "C:\SAD806x\BIN\KBAN7H4.BIN"

Same thing than previously, but it starts directly the disassembly and it does the text output, with the
default text output path, in this case ‘C:\SAD806x\BIN\KBAN7H4.txt’. Application can be used after
this.

C:\SAD806x>SAD8e6X .exe -F "C:\SAD806x\BIN"

This one is the most interesting, because it works at folder level. All binary files (only .bin files)
present in this folder (not in sub directories), will be disassembled (with their default definition if it
exists) and text output will be generated in the same folder (with its default name).

The process can take some time, based on the number of binaries to be processed.

At the end of the process, this message will appear:

SAD 8061-8065 X

o Folder Process has ended.

Logs are available in folder with start time.

A log file will be available in this folder ‘SAD 8061-8065.20XXYYZZ.AABBCC.txt’, including details on
what was really done.

SAD 8061-8065 - Folder Process (*.bin files) on folder
10:01:56 - Starting.
Processing Binary file : C:\SAD896x\BIN\BADBIN.BIN
10:01:56 - Starting.
Binary file is invalid.
Processing Binary file : C:\SAD8@6x\BIN\KBAN7H4.BIN
10:01:57 - Starting.
10:91:57 - Loaded.
Strategy KBAN7(H4)
Part Number XS7V-12A656-AJ
10:02:03 - Disassembled.
10:082:05 - Output done.

SAD 8061 — 8065 / SAD806x

: C:\SAD806xX\BIN

SAD 8061 — 8065 / SAD806x

Tips:

Disassembly/Output errors management:

| will give you a good example, based on CRDO catch code, with strategy RZASA.
For information, RZASA is one of the most complete and clean definition for EECV and is available
thanks to Decipha (http://www.efidynotuning.com/).

| have started from scratch, without a definition, | have disassembled binary, seen following errors,
done the text output without error, to analyze them:

SAD 8061-8065 X

e 4 Error(s)

Calibration Elements Conflict : 1 5985 vs 1 5986
Calibration Elements Conflict : 1 8397 vs 1 8398
Calibration Elements Conflict: 1 83e3 vs 1 83e4
Calibration Elements Conflict : 1 83e9 vs 1 83ea

Errors were only at disassembly level, but the output is needed to analyze them, so | open itin
parallel and for sure | keep SAD 806x opened.

| search for the first address.

M SAD 8061-8065 (CRDO_256k.bin / RZASA(B2 = O
File Disassembly Output Tools ?
Rfa+5c1 N Ric+4b [1 T 5985]
Rfa+5c2 g
'CRDO_256k bin
Rfa+5c4 Word 8065 Binary - 262144 Bytes
Rbase Rfc end next adc » |800 RZASA(B2) Strategy
Fice2 (CRDO_256k s6ix
Rfc+3 & Search Objects = O X
Rfc+4
Rice6 5985 [
Rfc+8 Tables (0) Banks :
Fios Fuctors 0 -
=
Rfcsc =) Scalars (1) e 22000 => 2££££
Rfc+e S 32000 => IEEEE
Rfc+10 Structures (0)
Rfc+12 Routines (0) L
Rfc+14 Properties Operations (0)
RBaszes :
gcolg Label Units gtehgm:d(ms o £0 (20€0), £2 (2444)
c+ H er Aadresses £4 (2€e€), £€ (289€)
Rfc+1a lRfC% l 0 ske [: Routines Signatures (0) £8 (44aa), £a (53éc)
Rfc+1c Short Label Elements Signatures (0) £c (5%3a), fe (75ce)
Ric+Te O signed Sc0459 O Byte Bt
Rfc+44
Rfc+45 Bit Fi{
Ric+46 Di done with errors.
Rfc+47 Comments Output Comments [] P
Rfc+48 5985
Rfc+49
Rfc+da 3
Rics+4b v e
< > Validate Cancel

Ok, | can see a word scalar and issue is on its second byte.

http://www.efidynotuning.com/

SAD 8061 — 8065 / SAD806x

B8 SAD 8061-8065 (CRDO_256k bin / RZASA(B2) - O X

File Disassembly Output Tools 7

-Rfa+5c2 A Rice4c [1 T 5986 |

Fas5od Bte CRDO_256k bin

Rbase Rfc end next adc 8065 Binary - 262144 Bytes
Rfc+2 > |3 RZASA(B2) Stategy
Rfc+3
-Ric+4
Rfc+6
Rfc+8

-Rfc+a Banks :

Ricsc 0 02000 => OFELE
12000 => LEEEE
22000 => 2ffff
22000 => IE£EE

CRDO_256k s6x

-Rfc+e
Rfc+10
Rfc+12

-Rfc+14
Ric+16 Properties

0 @ e

Rics18 . RBEases :
Label Units £0 (20€0), £2 (2444)

Rfc+la lRf-:Ac: ‘ O skio ‘ £4 (2€e€), £€ (389€)
Rfc+lc £8 (44aa), fa (S53éc)

Ricsle Short Label Scale £c (592a), fe (75ce)
oy 0 Sors & ove e

Rfc+45
Ric+46 il
Rfc+47
-Rfc+48 Comments Output Comments []
Rfc+49 5986

Rfc+4a
Rfc+4b
. L
Validate Cancel

Disassembly done with emors.
4 seconds.

< >

Ok, another byte scalar is defined at this place.

1 5985: 20,03 Rfc+4b Sc0459 word 320 800
Inc :
Inc 1 5986: 03 Rfc+4c Sc0460 byte 3 3

Same thing in the output, second byte is managed as an included element (‘Inc’).
8 geda: af,fg,4b,40 ldzbw R40, [Rfc+4b] R40 = (uns) [Sc0459];

eede: 8b,ed,bg, 40 cmpw R40, [Red+hg]
8 eeel: da,2f Jle efl3 if ((gig) R40 <= [123c]) goto efl3;

[==]

8 f13f: a3, fg,4b, 3c ldw R3c, [Rfc+4b] R3c = [5c0459];
£143: 8b,ed, kg, 3c cmpw R3c, [Red+bg]
£147: da, 24 jle fled if ((zig) R3c <= [123c]) goto fled:

[==ies)

ec7d: 15,34 deck R34 R34--;

ecif: c7,e4,39,34 sth [Red+39],R34 [12b9] = R34;

ec83: 9b, fc,4c, 34 cnpb R34, [Rfc+dc]

ec87: d3,02 jnc ecib if ((uns) R34 < [Sc0460]) goto ec8b;

Sc0459 is firstly used as byte, then as word, so yes it is a word scalar and Sc0460 is really used as
byte.

g
g
g
g

As conclusion, Sc0460 can be ignored, but if you skip it, it will do nothing, because SAD 806x will still
detect it. The best way to deal with it, is to set Sc0459 as byte scalar, thinking second use is an error
in code or a trick to simplify code.

Decipha gives details on Sc0459 and set it as SLPRMPOPN (TCC Ramp Open Exit Slip RPM) which is
defined as byte.

Like this issue is corrected.

This is the simplest example, it was not a real error, but yes, sometimes, calibration elements are
used in a strange way, both word and byte. Sometimes functions are defined properly, but
somewhere, a code part just want to read one of the output values, so it creates this type of
message. SAD 806x can not understand that, so it has to be warned and analysed and corrected if
necessary.

When errors are on operations, it is more interesting.

SAD 8061 — 8065 / SAD806x

Same binary, started from scratch with no definition, a disassembly was done, a SAD directives file
was imported, another disassembly and now these errors:

e 168 Error(s)

Operations Conflict : 8 2435 vs 8 2438
Operations Conflict : 8 2438 vs 8 2439
Operations Conflict : 8 243b vs 8 243¢
Operations Conflict : 8 243cvs 8 243e
Operations Conflict : 8 6029 vs 8 602a
Operations Conflict : 8 602c vs 8 602d
Operations Conflict: 8 f674 vs 8 f676
Operations Conflict: 8 f676 vs 8 f677
Operations Conflict: 8 f677 vs 8 f678
Operations Conflict: 8 f678 vs 8 f67a

SAD 8061-8065 X

Yes, it is something, much more impressive and as you can see message shows only the first conflicts.
No way in this case to obtain an output without errors:

SAD 8061-8065 X

S

50 Error(s)

8 539f
8 53a1
853a4
853a7
853a9
8 53ac
8 53af
8 53b0
853b2
853b6

Let’s start with first operations in conflict and from text output.

8 2413: f£3 popp
g 2414: 45,c8,02,£0,46 ad3w
8 2419: a3,e6,fa, 36 1dw
8 241d: 88,36,46 cmpw
8 2420: d9,13 jgtu
8 2422: 45,78,00,46,34 ad3w
8 2427: 8b,e6,fa, 34 CIpwW
8 242b: d3,08 jnc
8 242d: 94,46,36 xrb
8 2430: 71,03,36 an2b
8 2433: df,04 je

8 2435: c3,e0,fa,d6 atw
8 243f: c4,15,34 stb
8 2442: c4,1d,38 stb
8 2445: c4,19,37 stb
8 2448: c4,17,36 stb
8 244b: 08,04d,00 shrw
§ 244e: 94,35,34 xzrb
8 2451: c4,15,34 stb
8 2454: 08,09,00 shrw
8 2457: 08,09,00 shrw
8 245a: f3 popp
8 245b: f0 ret

R46,RE0, 2C8
R36, [Re6+fa]
R46,R36
2435
R34,R46,78
R34, [Re6+fa]
2435
R36,R46
R36,3

2439
[Re6+fal,R46
R15,R34
R1d,R38
R19,R37
R17,R36

0,d

R34,R35
R15,R34

0,9

0,9

pop (PSW)

[tmp01l]
[tmpZ21]

if ((uns)

[tmpll]

if ((uns)

[tmpZ1]
[tmpZ21]

if ([tmp21]
[maf_ptr] =

LSSI A
LSSI D
LSSI C
LSST_B
0 =
[tmpll]
LSSI A
0 =
0 =

= FNO36M;
= [maf ptr];

[tmp0l] > [tmp21])
= [tmp0l] + 78;

goto 2435;

[tmpll] < [maf ptr]) gotoc 2435;
A= [tmp0l1];

&= 3;

== 3) goto 2439;

[tmp0l]

[tmpll]:

[tmp31]:

[tmpZh];

[tmp21];

0 / 2000;

~= [tmplh];
[tmpll]:

0 / 200;
0 / 200;

pop (PSW)

return;

SAD 8061 — 8065 / SAD806x

| see nothing strange here, but | have not operation 8 2438 (or 2439, 243b, ...). | can see 2 operations
with a goto to 8 2435, so this one should be good and another one with a goto to 8 2439.

In definition, nothing (no operation, no routine) is defined at address 8 2435, but at 8 2438, yes,
coming from directives import.

&8 SAD 8061-8065 (CRDO_256k.bin / RZASA(B2))

File Disassembly Output Tools ?

IEIGNE ~ |[ACE_MULT_WRITE

Sub1636
Sub1637
Sub1638
Sub1639
Sub1640
Sub1641
Sub1642
Sub1643
Sub1644
Sub1645
Sub1646
Sub1647
Sub1648

Sub1650
Sub1651

Sub1649 Properties
Label

Sub1652

[AICE_MULT_WRITE

Sub1653

Sub1655

Sub1657
Sub1658

Sub1654 Fensmscit

Sub1656 [0] O ovemce

Comments

Short Label

Advanced AICE_MULTI_W

Advanced Properties

Output Comments []

Sub1659
Sub1660

Sub1661
Sub1662 v
. 3 >

Validate

Cancel

- O X
CRDO_256k bin
18065 Binary - 262144 Bytes
RZASA(B2) Strategy
(CRDO_256k s6x

02000 => Offff
12000 => 1f££ff
22000 => 2f£££f
32000 => F££E

]

RBases :
£0 (20€0), £2 (24449)
£4 (2€e€), £€ (209€)
£8 (44aa), fa (53€c)
£c (583a), fe (7Sce)

Output done with errors.

SAD 8061-8065

@ 164 Error(s)

Operations Conflict :
Operations Conflict :
Operations Conflict :
Operations Conflict :
Operations Conflict :
Operations Conflict :
Operations Conflict :
Operations Conflict :
Operations Conflict :
Operations Conflict :

8 6029 vs 8 602a
8 602c vs 8 602d
81674 vs 81676
81676 vs 8677
81677 vs 81678
81678 vs 8f67a
8f67avs 8f67c
8f67cvs 8f67d
8f67d vs 8f67e
8f67e vs 8 f67f

X

| skip it to test, no need to save SAD 806x definition, then another disassembly and another output.

SAD 8061 — 8065 / SAD806x

8 2413: £3 popp pop (P5W) 7

§ 2414: 45,c8,02,1£0, 46 ad3w R46,Rf0, 2c8 [tmp0l] = FNO36M:

§ 2419: a3,e6,fa, 36 1dw R36, [Reb6+fal [tmp21] = [maf ptr]:;

8 241d: 88,36,46 cmpw R46,R36

8 2420: d9,13 Jgtu 2435 if ((uns) [tmp0l] > [tmp2l]) goto 2435;
§ 2422: 45,78,00,46, 34 ad3w R34,R46,78 [tmpll] = [tmp0l] + 78;

g 2427: Bb,e6,fa, 34 cmpw R34, [Rebtfa]

8 242b: d3,08 jnc 2435 if ((uns) [tmpll] < [maf ptr]) goto 2435;
§ 242d: 94,46,36 %xrb E36,R46 [tmp2l] "= [tmp0l];

g 2430: 71,03,36 anZ2b R36,3 [tmp2l] &= 3:

g8 2433: df, 04 je 2439 if ([tmp2l] == 3) goto 2439;
8 2435: c3,e6,fa,d6 stw [Re6+fal,R46 [maf ptr] = [tmp0l1l];

8 2439: f0 ret return;

Suble2l:

8 243a: f2 pushp push (PSW) ;

8 243b: 90,35,34 orrb R34,R35 [tmpll] |= [tmplh]:

8 243e: fa di disable ints;

8§ 243f: c4,15,34 sth R15,R34 LSSI A = [tmpll];

§ 2442: c4,1d,38 sth R1d,R38 LSS5I D = [tmp31];

§ 2445: c4,19,37 sth R19,R37 LSSI_C = [tmpzh];

8 2448: c4,17,36 sth R17,R36 LSSI B = [tmp2l];

g8 244b: 08,0d,00 shrw 0,d 0 =20/ 2000;

§ 244e: 94,35,34 %xrb E34,R35 [tmpll] ~= [tmplh];

g8 2451: c4,15,34 sth R15,R34 LSSI A = [tmpll];

§ 2454: 08,09,00 shrw 0,9 0=20/ 200;

§ 2457: 08,09,00 shrw 0,9 0 =20/ 200;

8 245a: £3 popp pop (P5W) 7

8 24%5b: f0 ret return;

Ok, now it is fine for this part, routine set at 8 2438 was wrong, it can be removed.
164 errors remain to be corrected, but it should be the same thing.

You can now understand how to correct this type of issues, when they really are issues. | will not
described all conflicts, which are normal and properly working, like operations with ‘fe’, used with or
without it, you will have to analyze them yourself, SAD 806x gives just an information.

In a real conflict, one of the operation is wrongly defined, the first address given in message or the
second one. Sometimes it is easy to find and to correct, sometimes wrong operation comes from an
initial goto or call, which is not easy to find. The worst case, is related with a routine call, when
arguments were not properly identified or counted, because arguments are now identified as
operations and managed like this and because this call is done in many places.

By the way, you will always be able to correct these issues, by modifying SAD 806x definition.

SAD 8061 — 8065 / SAD806x

Banks Order and SAD 806x:

| write this chapter to describe, how SAD 806x works with banks and their order, following a
ridiculous issue | had with an EEC, just because | had forgotten some details.

SAD 806x is not dependent from banks order in rom. Let’s take the strategy which gives me some
troubles, ATAFH. | was working since some time, on a binary coming from Ford IDS.

8 SAD 8061-8065 (ATAFHE3 224.BIN / ATAFHE3 224.56x / ATAFH(E3)) - O X

File Disassembly Output Tools 7

Properties
[#)- Reserved (185) ATAFHE3 224 BIN
(- Tables (52) 8065 Binary - 220376 Bytes
[#]- Functions (144) ATAFH(E3) Strategy
[#)- Scalars (134) ATAFHE3 224 56x
Structures (0)
[#- Routines (54)
Operations (0)
[#)- Registers (324) Banks :
-Other Addresses (0 1 0eo00 = ibeee
Routines Signatures (0) 8 1c000 => 29££E
[+]- Elements Signatures (4) Lo e e

RBases :
£0 (20€0), £2 (2348)
£4 (25cB), £€ (2€de)
£8 (3eed), fa (4824)
£c (4£5€), fe (€2£4)

CheckSum is walid

CheckSum cOde
SMP Base Address e000
CC Exe Time 005d
Levels Number 8
Calibs Number 1
|

Before updating it, | have compared it with the one on the car, with SAD 806x and | have seen no
difference at all, so | have updated it and | have sent it on the car and nothing was working. | have
updated it with PATS, VID block coming from car, | have sent it another and another time, with the
same result.

8 SAD 8061-8065 (ATAFHE3 224 Kess.BIN / ATAFH(E3)) — O X
File Disassembly Output Tools ?
Properties
[#)- Reserved (185) ATAFHE3 224 KessBIN
(- Tables (32) 8065 Binary - 220376 Bytes
[#- Functions (144) ATAFH(E3) Strategy
[#)- Scalars (134) ATAFHES 224 "
Structures (0)
[#- Routines (54)
Operations (0)
[#- Registers (324) Banks :
Ot s) o oo > 2oss
Routines Signatures (0) 8 0e000 => 1bEEE
[#- Blements Signatures (4) $ 2a000 => TELE
RBases :

£0 (20€0), £2 (2248)
£4 (25c8), f€ (3éde)
£8 (3eed), fa (4824)
fc (4£5€), fe (€2£4)

CheckSum is walid

CheckSum cOde
SMP Base Address e000
CC Exe Time 005d
Levels Number 8
Calibs Number 1

SAD 8061 — 8065 / SAD806x

Because of the title of this chapter, you know what was the issue.

Banks : Banks :
1] 00000 => OdE£f 0 1c000 => 29£ff
1 0e000 => lbfff L 00000 => OdEff
B 1c000 => 29£ff B Oe000 => 1bEfff
- 2a000 => 3T££f g 2a000 => 3T£ff

With the same definition, except here and in the header of the text output, it is impossible to know,
that binaries are different. Yes, banks order is not the same and in SAD 806x, your definition works
perfectly on both binaries, each element compared in 2 different SAD 806x sessions is identical.

This is really practical, to have a definition, which is banks order free, but you should not forget this
information.

TunerPro is not banks order free and if you export this definition for TunerPro, in one case it will not
work, nothing will be exported, because of the Xdf base offset, which is defaulted by SAD 806x.

For the first binary you have by default:
Xdf Base Offset
Subtract [] | <000

For the second one:
Xdf Base Offset
Subtract 2000

If you want to use the same definition, with binaries having a different banks order, it works perfectly
inside SAD 806, but for using TunerPro, you will have to play with the Xdf base offset. Same thing, if
you want to change the banks order in your binary, this is the only information to update in
definition, to be totally compatible with TunerPro.

And for sure, before updating an EEC, be sure to use the right banks order.

SAD 8061 — 8065 / SAD806x

Glossary:

EEC : Ford Electronic Engine Control is the Ford engine control unit.
EEC-IV uses 60pin connector, 8061 processor and 1 bank, EEC-V uses 104pin
(sometimes 60pin) connector, 8065 processor and 4 banks (not always activated).
Both possesses a J3 connector in addition. Additional information will not be
described here.

J3 connector : Ford J3 connector is a service connector for EEC-IV and EEC-V.
It will not be described here.

Rom/Binary : Each EEC contains a specific Rom/Binary, stored in a Flash memory.
It contains both instructions and calibration values.

Strategy : Each Binary is based on a Strategy, which is in fact position of
instructions and calibration values in the binary. It is not the EEC Catch Code.

Strategy version : For the same strategy, where version is different, just calibration
values are modified.

EEC Catch Code : The main information visible on the EEC.
One Strategy version gives one Catch Code.

EEC Hardware Code : The hardware code for the EEC. One hardware code permits to use
different strategies, but one strategy requires a specific hardware code.

Bank : Memory bank, in binary. 56ko maximum.
Instructions : Instructions provided to processor to process parameters.
Operations : Set of instructions and parameters.

Routines : Set of operations, virtually created to be able to better understand
disassembled code.

Registers : Aregister is an EEC memory address, not related with rom, used to
share data or information inside program. Globally on EECV addresses start at 0x0000
to go to Ox1FFF and another part can be used from 0xFOOO to OxFFFF.

Calibration Values : Calibration values can be split in 4 categories:
Structures : a variable set of bytes, words based on conditions.
Tables : a table of bytes or words with fixed size. 3 input values,
columns number, column scaled value and row scaled value. 1 output value.
Functions : a table with 2 columns. 1 input value. 1 output value.
Scalars : a byte or a word value.

RBases : Most important part of EEC-IV and EEC-V use RBase shortcuts for
defining the calibration element addresses. RBases are in fact dedicated
registers, containing a base address inside the calibration rom part. By adding
a value to it, it gives an element address, still in the calibration rom part. The

RConst

Disassembly

Checksum

SAD 8061 — 8065 / SAD806x

first calibration element at the address pointed by a RBase is the end address
of its own part. RBases are mainly 8 word registers, which follow themselves.

: Late EEC-IV and EEC-V use, what | call, RConst. It is working like
RBases, but essentially for register addresses. They are still dedicated
registers, containing a base value and by adding another value to them, it
gives a register address.

: It is the human understandable version of the instructions and their
parameters, separated from the data, which are the calibration values.

: Rom contains a value, stored at a defined address, which permits to
control validity of the whole rom, to prevent copy errors. When updating
something in rom (except in certain parts), it is required to modify the
checksum, to be sure related routine, will not generate an error code.

Files:

SAD 8061 — 8065 / SAD806x

Rom/Binary files : 1 bank (8) for EEC-IV, 2 banks (8 and 1) minimum for EEC-V.
(.bin, .hex ...).

Séx files : SAD806x definition file (.s6x). Basically an xml file. Use one
by strategy.

SAD 806x repository files : SAD806x repository files. Basically an xml file.

‘registers.xml’, ‘structures.xml’, ‘tables.xml’, ‘functions.xml’, ‘scalars.xml’, ‘units.xml’
or ‘conversion.xml’.

SAD files : SAD disassembler directives files (.dir) and comment files (.cmt).

TunerPro files : TunerPro definition file (.xdf).

	Description:
	Installation:
	First start:
	Binary loaded:
	Binary disassembled:
	Disassembled Binary Outputted:
	SAD 806x definition:
	Properties:
	Reserved:
	Scalars:
	Functions:
	Tables:
	Structures:
	Routines:
	Operations:
	Registers:
	Other addresses:
	Routines Signatures:
	Elements Signatures:

	Disassembly Text Output:
	SAD 806x menu:
	File menu:
	Disassembly menu:
	Output menu:
	Tools search menus:
	Tools Import/Export menus:
	Tools Comparisons menus:
	Tools Hex Editor menu:
	Help Repository menus:

	SAD 806x command line options:
	Tips:
	Disassembly/Output errors management:
	Banks Order and SAD 806x:

	Glossary:

