

SAD 8061 – 8065 / SAD806X
Version 1.0.0.3

DOCUMENTATION
Version 0.1

By Pym (thepym@free.fr)

tion

SAD 8061 – 8065 / SAD806x

 1

Table of contents
Description: ... 3

Installation: .. 4

First start: .. 5

Binary loaded:.. 6

Binary disassembled: ... 13

Disassembled Binary Outputted:... 17

SAD 806x definition: .. 19

Properties: ... 20

Reserved: ... 22

Scalars: ... 24

Functions: .. 37

Tables: ... 45

Structures: ... 55

Routines: .. 66

Operations: .. 80

Registers: ... 84

Other addresses: ... 90

Routines Signatures: .. 94

Elements Signatures: ... 109

Disassembly Text Output: ... 122

SAD 806x menu: .. 133

File menu: .. 133

Disassembly menu: .. 134

Output menu: .. 135

Tools search menus: .. 136

Tools Import/Export menus: ... 138

Tools Comparisons menus: ... 141

Tools Hex Editor menu: ... 153

SAD 8061 – 8065 / SAD806x

 2

Help Repository menus: .. 155

SAD 806x command line options: ... 160

Tips: ... 162

Disassembly/Output errors management: .. 162

Banks Order and SAD 806x: ... 167

Glossary: .. 169

SAD 8061 – 8065 / SAD806x

 3

Description:

SAD 8061 – 8065 or SAD806x, is a semi-automatic disassembler tool for Intel 8061 or 8065

microcontrollers, specifically dedicated to Ford engine control units EEC-IV and EEC-V.

Its initial purpose was as following:

- To disassemble 8061/8065 roms

 - To do it automatically or semi-automatically

 - To generate disassembly outputs in multiple formats

Current version gives comparison functions in addition.

SAD806x is still under development, is not a commercial product and so no guarantee can be

provided on it.

SAD806x never updates the binary file which is used, other tools are dedicated for this job, but do

not melt files extensions, to be sure.

This document contains some kind of glossary, which could help on some meanings, but a certain

knowledge about disassembling and ECU tuning will clearly help. A good starting point, would be to

read “TECHNICAL NOTES ON THE EEC-IV MCU” (Eectch98.pdf).

 Thanks to Andy (tvrfan) for SAD, software used as template for initial output, to Mark

Mansur for TunerPro, which permits to continue working generated data.

SAD 8061 – 8065 / SAD806x

 4

Installation:

SAD806x can be installed everywhere on a Microsoft Windows system, using Framework 2.0

at least. Following files should be present in its folder to permit it to work properly:

- SAD806x.exe : the executable file.

- NCalc.dll : Mathematical Expressions Evaluator for .NET

(https://github.com/sheetsync/NCalc)
- System.Windows.Forms.DataVisualization.dll : Microsoft Charting for .NET
- conversion.xml (optional) : Conversion repository
- units.xml (optional) : Units repository
- registers.xml (optional) : Registers repository
- structures.xml (optional) : Structures repository
- tables.xml (optional) : Tables repository
- functions.xml (optional) : Functions repository
- scalars.xml (optional) : Scalars repository

If you want to update/create repository, just make sure you have enough right on computer and
folder.

https://github.com/sheetsync/NCalc

SAD 8061 – 8065 / SAD806x

 5

First start:

 You have two ways to start SAD806x, by command line, which will provide additional options
(it will be seen later on) or directly and directly by double clicking on its executable.

Menus are activated based on status of worked binary.

It is possible to work on repository directly without loading a binary, but that is the only available

ability at this level.

So the next step is to select a binary file, through menu ‘File/Select Binary …’or to drop it on

application.

SAD 8061 – 8065 / SAD806x

 6

Binary loaded:

When loading a new binary, SAD806x directly tries to analyse it.

By default, SAD806x tries to find S6x definition, in the same folder than the binary, with the same

name, but off course with .s6x extensions. If it finds it, it is loaded at the same time.

First analyse will show its result in panels on the right.

SAD 8061 – 8065 / SAD806x

 7

When a bad binary is loaded, result is as following :

Do not forget, that SAD806x only works with Ford EEC-IV and EEC-V binary, from 32ko to 256ko.

At this level, signle option is to look at hexadecimal code on it, menu ‘Tools/Hex Editor’, to

understand the issue and correct it with an external tool or to go to another binary.

It will be detailed later on.

SAD 8061 – 8065 / SAD806x

 8

A valid binary file will be loaded like this:

Elements definition, directly filled reserved addresses, elements detected at load or defined in

associated definition and predefined signatures.

‘Binary and definition information panel’.

‘Banks information panel’.

‘RBases information panel’.

‘Other information panel’.

‘Work progress bar’.

Same thing with an available definition in the folder.

SAD 8061 – 8065 / SAD806x

 9

SAD 8061 – 8065 / SAD806x

 10

By clicking on ‘Binary and definition information panel’, additional information can be displayed:

When Checksum is given as invalid in ‘Other information panel’, by clicking on this panel, you can

have the right value to use:

Sometimes Checksum cannot be calculated at all.

At this level some options are now available in menu.

‘File/Select SAD 806x…’ : to select another S6x file. Current name is given just below.

From my point of view, the best thing to do is to use the same name than the

binary file from the beginning.

‘File/Save SAD 806x’ : available at this level, to create S6x file here.

‘Disassembly/Disassemble’ : nothing to say here. It will be detailed later on.

SAD 8061 – 8065 / SAD806x

 11

‘Tools/Search Objects’ : nothing to say here, tools will be described later on.

‘Tools/Search Signature’

‘Tools/Hex Editor’

‘Tools/Import/Export/SAD806x files/Import Signatures’

‘Tools/Import/Export/SAD files/Import SAD Dir file’

‘Tools/Import/Export/SAD files/Import SAD Cmt file’

‘Tools/Import/Export/SAD files/Export SAD Dir File Part’

SAD 8061 – 8065 / SAD806x

 12

‘Tools/Import/Export/TunerPro files/Import/Sync Xdf file’

‘Tools/Import/Export/TunerPro files/Export/Sync Xdf file’

‘Tools/Import/Export/TunerPro files/Reset UniqueId for new export’

‘Tools/Comparisons/SAD 806x Comparison (Same Binary)’

So the classical next step will be to disassemble the binary, with a definition or without, through

menu ‘Disassembly/Disassemble’.

SAD 8061 – 8065 / SAD806x

 13

Binary disassembled:

When disassembling a binary, it will take some resources on computer and based on its speed, it

could take some seconds, ‘Work progress bar’ will help and at the end result is always the same, with

a definition provided or not, this information will appear in ‘Other information panel’.

When result is ‘Disassembly done’, SAD806x has not detected any error in operations or calibration

elements, but it could have some, which appear later on output.

When definition contains errors or with some binaries, result could be ‘Disassembly done with

errors’.

It does not signify that disassembly has failed, but that some operations or calibration elements are

wrong, in fact with addresses shared with others. By clicking on ‘Other information panel’, details will

be provided. Identification and/or correction of these errors will be detailed later on.

SAD 8061 – 8065 / SAD806x

 14

At this level, new options are available.

‘Output/Text Output’ : to generate the disassembled text output. It will be detailed later

on.

‘Output/Select File …’ : you can notice that the output file name is shown just before. You

can just select another output file. But if shown file already exits, by double

clicking on the file name, you can open in in the default editor.

‘Tools/Comparisons/Binaries Comparison (Same definition)’ : nothing to say here,

comparison tools will be described later on.

‘Tools/Comparisons/Binaries Comparison (Different definition)’

‘Tools/Comparisons/Calibration Chart View’

‘Tools/Comparisons/Routines Comparison/Export Skeleton’ : nothing to say here,

Routines comparison tools will be described later on.

‘Tools/Comparisons/Routines Comparison/Compare Skeletons’

‘Tools/Comparisons/Routines Comparison/Compare Binaries’

‘Tools/Comparisons/Routines Comparison/About…’ : This one is information

about this menu.

When binary is disassembled, SAD806x memory contains auto-detected and already defined

operations, calibration elements and other elements, which have been separated. In addition routine

grouping has been created and is available, same thing for useful registers. Everything is available in

‘Elements definition’ tree, except non provided operations, which have no interest here.

SAD 8061 – 8065 / SAD806x

 15

Everything related with ‘Elements definition’ tree with be seen later on, type by type.

SAD 8061 – 8065 / SAD806x

 16

For the next step that can be done with this memory, without talking about tools, it is the text

output. So just use menu ‘Output/Text Output’.

SAD 8061 – 8065 / SAD806x

 17

Disassembled Binary Outputted:

To output the disassembled binary, it will take some resources on computer and based on its speed,

it could take some seconds, because generated file can have many lines, ‘Work progress bar’ will help

to know the status. This information will appear in ‘Other information panel’.

Like for disassembly, when result is ‘Output done’, SAD806x has not detected any error in operations

or calibration elements outputting, but it still could have some.

When definition contains errors or with some binaries, result could be ‘Disassembly done with

errors’.

Like for disassembly, it does not signify that output has failed, but that some operations or

calibration elements are wrong, in fact with addresses shared with others. By clicking on ‘Other

information panel’, details will be provided. Identification and/or correction of these errors will be

detailed later on.

SAD 8061 – 8065 / SAD806x

 18

At this level, options are the same than at the disassembled level.

The disassembly text file will be explained later on.

SAD 8061 – 8065 / SAD806x

 19

SAD 806x definition:

Working without a proper definition, is a required starting point in many cases.

SAD 806x will do its first job, to disassembly the binary and as a result, most of the calibration

elements will be identified and the code will be translated, grouped and separated from the

elements. Doing a text output will show this, but it will be seen later on.

SAD 806x will also do its second job, to show all these elements and to permit to update them, to

create a proper definition, which could be saved, exported and so on.

Everything is accessible through ‘Elements Definition’.

Let’s take this from the beginning.

SAD 8061 – 8065 / SAD806x

 20

Properties:

‘Properties’ give a generic setup for the SAD 806x definition, which will be mainly used for output

and Xdf file export. Following items are available:

- ‘Label’ : The label of your definition, initialized with detected

strategy name, if found.

- ‘No automatic numbering’ : It indicates, if auto-detected elements will use generated

count or directly their address, in their generated labels, short labels. Checked means, it

will use addresses.

- ‘Registers list output’ : It indicates, if the list of user defined registers, will be

outputted at the beginning of text output or not.

- ‘Comments ‘ : Always useful.

- ‘Xdf Base Offset’ : ‘Subtract’ checkbox and address text box, permits to

provide to TunerPro, the right position for Calibration Bank, when exporting to Xdf file.

When using auto detected (default) address, only elements in Bank 1 and after can be

addressed, but addresses become really clear in TunerPro. For other elements or

patches, you will have to do some tries.

‘Label’, ‘Comments’ and ‘XDF Base Offset’, will be reused for Xdf Export.

SAD 8061 – 8065 / SAD806x

 21

You will see everywhere, the following buttons:

They will be enabled based on current status.

‘Validate’ : It will save into memory, updates done at this level, here on properties. You

will see a color change when done, but it will be required to save Sad 806x file (.s6x file), to save

things definitively. Do not forget this button, before opening another thing.

‘Cancel’ : It will just cancel updates done at this level, since last load or Validate, here

on properties.

SAD 8061 – 8065 / SAD806x

 22

Reserved:

‘Reserved’ part includes fixed addresses elements or other items that should not be updated at their

definition level.

So nothing can be modified on them, available information is displayed when mouse is over the item.

On some of them, through a right click you can have access to the context menu. But here, the only

option is ‘Copy (xdf)’, which is is useful for them, not for the others. Options will be detailled later on.

SAD 8061 – 8065 / SAD806x

 23

Everything related with reserved elements will be present in text output, but will not be

automatically exported to Xdf or other formats.

SAD 8061 – 8065 / SAD806x

 24

Scalars:

Scalars are the first calibration elements described and the simplest ones, therefore, all available

actions on the element will be detailed at this place, but their description can be reused for other

calibration elements.

SAD 8061 – 8065 / SAD806x

 25

For everything related with assembly, everything related with an address, you have these elements:

‘Descriptor’ : Descriptor of the element, which is read only here, this one appears in the

list on the left too.

‘Bank’ : The bank number for the element.

‘Address’ : The address of the element in the related bank.

Color changes based on cases. Purple for updated elements, red for new one to be reviewed.

SAD 8061 – 8065 / SAD806x

 26

For everything related with calibration elements, you will have an ‘Element Data’ part:

‘Element Data’ will directly display scaled value(s) for the element.

By right clicking on this part you will have access to some options:

‘Decimal’ : Checked, data is displayed as decimal values, unchecked as hexadecimal

values (not scaled anymore, when hexadecimal).

‘Ignore conversion’ : Does not scale values anymore when checked.

SAD 8061 – 8065 / SAD806x

 27

‘Reverse Order’ : It has no interest for Scalars, but for Functions or Tables, it starts from the

last row, when checked, which makes data esaier to read.

‘Additional Output Conversion’ : It permits to add, only in this place a second scale level, after the

first one (if one is defined), to display data converted, to validate a new scaling formula or to identify

classical types of values. Options present in the list are coming from the conversion repository, when

mouse is over you can see the used formula. It does not apply with ‘Ignore conversion’ or outside

‘Decimal’ range.

A specificity exists for Functions, another option ‘Additional Input Conversion’ will be present, it is

the same thing, but a function has an Input value and an Ouput one, therefore, it is necessary to have

a specific conversion for each of them.

SAD 8061 – 8065 / SAD806x

 28

A Scalar is a byte (8 bits) or a word (16 bits) value. Because we are disassembling based on Intel

instructions, word values are store low byte first (LSB in TunerPro) in assembly. This is the case for

everything, including, functions, tables and structures.

A Scalar can be used as signed, based on related instructions.

You have 2 main types of scalars, the ones which are related with RBases, they will appear by default

with their related RBase and the value added and the others, outside calibration part which will

appear differently.

Let’s describe ‘Element Properties’ part:

‘Element Properties’ part contains generic properties, which you will globally find on all elements,

specific properties, only related with this type of element and specificities, which are more complex

properties dedicated to this specific type of element.

For something like all text fields, by using shortcut ‘Ctrl-Shift-U’ shortcut on selected text, text will be

upper cased, with ‘Ctrl-U’ it will be lower cased.

Generic properties are like following:

‘Label’ : Auto generated by default, based on auto numbering. It will be visible at the

element address in the output.

It will be exported as main description, and inside comment in TunerPro.

By using shortcut ‘Ctrl-R’ shortcut in this place, the related repository will be searched for a matching

based on ‘Short Label’. In our case ‘Scalars Repository’.

‘Short Label’ : Auto generated by default, based on auto numbering. It will be visible in

code when element is used, and for sure at the element address too.

It will be exported with ‘Label’ inside comment in TunerPro, because it has no equivalent in

TunerPro.

By using shortcut ‘Ctrl-R’ shortcut in this place, the related repository will be searched for a matching

based on ‘Short Label’. In our case ‘Scalars Repository’.

SAD 8061 – 8065 / SAD806x

 29

‘Skip’ : When skipped, user defined definition for element is ignored at

disassembly. Auto detection comes back to override the defined element.

‘Comments’ : Auto generated by default, with address in this case. It will be visible at the

element address in the output only if ‘Output Comments’ is checked.

It will be exported preceded with ‘Label’ and ‘Short Label’ in TunerPro, to keep trace of everything.

By using shortcut ‘Ctrl-R’ shortcut in this place, the related repository will be searched for a matching

based on ‘Short Label’. In our case ‘Scalars Repository’.

Scalars specific properties are like following:

‘Byte’ : Checked, scalar is declared as byte (8 bits), otherwise it is declared as word

(16 bits). Detection is based on related instructions.

‘Signed’ : Checked, scalar is declared as signed, otherwise it is declared as unsigned.

Detection is based on related instructions.

‘Scale’ : Formula to obtain the right scaled value. Scaled value will appear in the

output.

By using shortcut ‘Ctrl-R’ shortcut in this place, and on all related ‘Scale’ fields, the ‘Conversion

Repository’ will be searched entirely.

‘Units’ : This is the data unit for the related element, which is only used for

information and for TunerPro.

By using shortcut ‘Ctrl-R’ shortcut in this place, and on all related ‘Units’ fields, the ‘Units Repository’

will be searched entirely.

SAD 8061 – 8065 / SAD806x

 30

How works a repository search?

With a text search:

Which provides a search result, which will be used to fill in current field or element.

SAD 8061 – 8065 / SAD806x

 31

Scalar specificities:

Scalar can be detected or declared as a set of bit flags.

A byte scalar set as bit flags can also contains 8 values of 0 (not set) or 1 (set) flags.

It is not possible to directly check the Bit Flags box, you have to go through the Bit Flags forms, by

clicking on the button.

A scalar is autodetected as a bit flags, when it is used in a bit condition (and not only for its sign), only

related bit position is set as bit flag. You can do it manually through the related form and by right

clicking on ‘Bit Flags header’.

‘New Element’ : It creates one bit flag in the list, if a position is available (8 positions for

bytes, 16 for words).

‘Create All’ : It creates all remaining bit flags.

‘Remove All’ : It deletes all declared bit flags.

SAD 8061 – 8065 / SAD806x

 32

The ‘Bit Flag’ properties part, permits to detail each flag.

‘Label’ : It is working like for other elements. Result will be seen for text output.

‘Short Label’ : No additional meaning. Result will be seen for text output.

‘Skip’ : No additional meaning.

‘Comments’ : Visible only in this place or in export, not in the output, no way to output it

properly.

‘Position’ : This is the bit position inside the scalar, 0 to 7 for bytes, 0 to 15 for words.

Bytes and words, bit order has to be known.

‘Output Set Value’ : 1 by default, but you can invert it if necessary, based on the meaning of

your label.

‘Output Not Set Value’ : 0 by default, but you can invert it if necessary, based on the meaning of

your label.

‘Add / Update’ button : Permit to validate creation when it is a newly added bit flag or an update,

when it was already created. Do not forget it for each bit flag.

When everything is done, just close the form, through the cross, to update Scalar properties.

SAD 8061 – 8065 / SAD806x

 33

‘Scalars’ category menu:

By right clicking on a category, you can, in major part of cases access, to options. In case of ‘Scalars’

category, you will obtain this result (based on current status of memory and/or disassembly).

Following options are available here:

‘New Element’ : It displays creation part for an element in the related

category, a scalar here.

‘Skip all’ : It will set ‘Skip’ to true on all elements in the category,

scalars here. The danger is that all autodetected elements will be updated, and stored after a save in

the S6x file.

‘Unskip all’ : It will set ‘Skip’ to false on all elements in the category,

scalars here. The danger is that all autodetected elements will be updated, and stored after a save in

the S6x file.

‘Clean Up Unmodified Elements’ : It permits to remove/reset all autodetected elements, to

permit to exclude them from S6x file, when they were already saved in it, with their default values.

It permits to reduce S6x file size, generated by ‘Skip/Unskip all’ option and by the TunerPro export,

that will associate Ids to all exported elements.

To activate ‘Paste’ and ‘Paste Multiple’ options, it is required to copy an element in memory (from

SAD 806x or TunerPro, here normally, it should be a scalar.

SAD 8061 – 8065 / SAD806x

 34

‘Paste’ : It will create/update the element, with all provided

properties, based on its category.

When copy was done from SAD 806x, a default available address will be used and element is created.

It will appear in red in list to be corrected at address level.

When copy was done from TunerPro, TunerPro address is used mixed with ‘XDF Base Offset’ defined

in SAD 806x properties. If an element exists at this address, is will be overwritten and will appear in

purple in the list, otherwise, element is created and will appear in red in list to be checked.

‘Paste Multiple’ : It exists only for scalars and works only with SAD 806x data.

It permits to do a classical ‘Paste’, with an increment in address, but n times (1 time to 16 times).

For example, just take a byte scalar copied at address 0x2000. A ‘Paste Multiple’ 1 time, will create a

copy at address 0x2001. If it is a word scalar, it will be created at address 0x2002. For 3 times, you

will have 3 byte scalars created at 0x2001, 0x2002, 0x2003 or 3 word scalars created at 0x2002,

0x2004, 0x2006 and so on. If an address is already used, the related address will be ignored, nothing

will be created at this address.

SAD 8061 – 8065 / SAD806x

 35

‘Scalar’ element menu:

By right clicking on an element, you can, in major part of cases, access to options. In case of ‘Scalar’

element, you will obtain this result (based on current status of memory and/or disassembly).

Following options are available here:

‘Display’ : Equivalent to the left click on the element, it will display the

properties and data of the selected element.

‘New’ : It displays creation part for an element with the same

category, a scalar here.

‘Rename’ : It put the element in the list in edit mode, to be renamed at

descriptor level. The same thing is possible with a short left click on the element in the list. After the

descriptor is changed, it is applied to the related value on the properties of the updated element.

‘Copy’ : It copies the current element into the clipboard, to be

reused in current SAD 806x session or in another one.

‘Copy (xdf)’ : It copies the current element into the clipboard, with

TunerPro format, to be reused in TunerPro.

‘Paste’ : It will create a new element or update an element (if

address matches and only when it is coming from TunerPro).

It is the same functionnality than the one on the category.

‘Paste Multiple’ : It exists only for scalars and works only with SAD 806x data.

It permits to do a classical ‘Paste’, with an increment in address, but n times (1 time to 16 times).

It is the same functionnality than the one on the category.

SAD 8061 – 8065 / SAD806x

 36

‘Paste and Overwrite’ : It is the same functionality than ‘Paste’, with one major

exception, it will apply on the address of the selected element, properties coming from clipboard,

will in fact overwrite current element.

‘Create Duplicate’ : It is now possible to have multiple elements (of same

category) at the same address. It is just to be TunerPro compliant and for some strategies, re-using

scalers in a strange way. With this option, you can create a new Duplicate element at the same

address. In the output only the main one will be displayed, so we have main element for an adress

and its duplicates. Removing the element, will set its first duplicate, if it exists as the main one.

‘Set as Main’ : This option is available when the element is a duplicate one.

It permits to switch the main element with the current one to set it as main, with all related

consequences.

‘Search Operations’ : The goal of this option is to display, where the element is

used in code. So a short part of the code is generated, to display this result. Sometimes it is not

possible, but when it is working, it really helps. Result appears in a related ‘Operations’ tab, and it will

display where element it used (firstly):

‘Skip’ : It will directly set ‘Skip’ as true on selected element.

‘Reset/Remove’ : It will delete everything set by user, on the selected

element, so it is like a remove for a user created element (or before the disassembly) and like a reset

for an auto-detected element, which has been updated by the user, after disassembly.

Really removed element, will disappear after this option is executed, a reset on element, will keep it

visible and accessible.

SAD 8061 – 8065 / SAD806x

 37

Functions:

A Function is a two columns table, using an input value to get an output one.

Input values can be bytes (8 bits) or words (16 bits) and Output values will have the same size. Input

values can be signed or unsigned and Output ones can also be. Setup on one row applies to the

whole function.

Because we are disassembling based on Intel instructions, word values are store low byte first (LSB in

TunerPro) in assembly.

Number of rows in function is never known or provided to related routine giving the result, this is

why it can be dangerous to update function values, in a bad way.

Also, auto detection of rows number, is based on minimum and maximum values, with other things,

it is not an exact science and it can be wrong, exactly like the routine would be.

It exists a specific type of function, which we will call ‘Scalers’. They are used to scale table’s inputs.

Auto detection tries to detect them, and to auto set their ‘Output Scale’, often to X/16 for byte

output and X/256 for word output. They are essential to work with tables.

SAD 8061 – 8065 / SAD806x

 38

‘Element Data’ part looks like the following one:

As you can see it is a Word Input, Word Output function, with two columns and their labels are clear

enough.

Only specificity for functions, two conversion options in menu, one for Input, the other for Outpout.

SAD 8061 – 8065 / SAD806x

 39

‘Element Properties’ part is the following one:

Another time, for something like all text fields, by using shortcut ‘Ctrl-Shift-U’ shortcut on selected

text, text will be upper cased, with ‘Ctrl-U’ it will be lower cased.

Generic properties are like following:

‘Label’ : Auto generated by default, based on auto numbering. It will be visible at the

element address in the output.

It will be exported as main description, and inside comment in TunerPro.

By using shortcut ‘Ctrl-R’ shortcut in this place, the related repository will be searched for a matching

based on ‘Short Label’. In our case ‘Functions Repository’.

‘Short Label’ : Auto generated by default, based on auto numbering. It will be visible in

code when element is used, and for sure at the element address too.

It will be exported with ‘Label’ inside comment in TunerPro, because it has no equivalent in

TunerPro.

By using shortcut ‘Ctrl-R’ shortcut in this place, the related repository will be searched for a matching

based on ‘Short Label’. In our case ‘Functions Repository’.

‘Skip’ : When skipped, user defined definition for element is ignored at

disassembly. Auto detection comes back to override the defined element.

‘Comments’ : Auto generated by default, with address in this case. It will be visible at the

element address in the output only if ‘Output Comments’ is checked.

It will be exported preceded with ‘Label’ and ‘Short Label’ in TunerPro, to keep trace of everything.

By using shortcut ‘Ctrl-R’ shortcut in this place, the related repository will be searched for a matching

based on ‘Short Label’. In our case ‘Functions Repository’.

Functions specific properties are like following:

SAD 8061 – 8065 / SAD806x

 40

‘Byte’ : Checked, function is declared as byte one, byte input and output, otherwise

it is declared as ‘Word’. Detection is based on related routines.

‘Rows Number’ : Auto detected, rows number is one of the main information for

function.

‘Signed Input’ : Checked, input is declared as signed, otherwise it is declared as

unsigned. Detection is based on related routines.

‘Signed Output’ : Checked, output is declared as signed, otherwise it is declared as

unsigned. Detection is based on related routines.

‘Input Scale’ : Formula to obtain the right scaled input value. Scaled value will

appear in the output.

By using shortcut ‘Ctrl-R’ shortcut in this place, and on all related ‘Scale’ fields, the ‘Conversion

Repository’ will be searched entirely.

‘Output Scale’ : Formula to obtain the right scaled output value. Scaled value will

appear in the output.

By using shortcut ‘Ctrl-R’ shortcut in this place, and on all related ‘Scale’ fields, the ‘Conversion

Repository’ will be searched entirely.

‘Input Units’ : This is the data unit for the related input, which is only used in this

place and for TunerPro.

By using shortcut ‘Ctrl-R’ shortcut in this place, and on all related ‘Units’ fields, the ‘Units Repository’

will be searched entirely.

‘Output Units’ : This is the data unit for the related input, which is only used in this

place and for TunerPro.

By using shortcut ‘Ctrl-R’ shortcut in this place, and on all related ‘Units’ fields, the ‘Units Repository’

will be searched entirely.

SAD 8061 – 8065 / SAD806x

 41

‘Element Information’ for Function:

Functions possess an additional ‘Element Information’ tab, which includes additional details grabbed

during disassembly and interessant to be known.

In this case, we discover, it has been auto detected as scaler for one table and set like that, because

no doubt was possible. We discover which Register is used as Input value too. For sure, when labels

are redefined, elements appear translated here.

SAD 8061 – 8065 / SAD806x

 42

Function specificities:

When function is opened when clicking on a table sclarer, ‘Back’ button appears to permit to come

back to table.

SAD 8061 – 8065 / SAD806x

 43

‘Functions’ category menu:

No specificity at all.

SAD 8061 – 8065 / SAD806x

 44

‘Function’ element menu:

No specificity at all.

SAD 8061 – 8065 / SAD806x

 45

Tables:

Tables are essentially n columns multiplied by n rows containing scalars, often bytes (8 bits),

sometimes words (16 bits). But a table is always a fully bytes table or fully words table.

Input values can be bytes (8 bits) or words (16 bits) and Output values will have the same size.

One Input value for column position, another for row position. Output values can be signed or

unsigned. Setup on one row applies to the whole function.

Because we are disassembling based on Intel instructions, word values are store low byte first (LSB in

TunerPro) in assembly.

Number of rows in table is never known or provided to related routine giving the result, routine uses

3 input values, the columns number, the column position and the row position.

Column or row position are essentially coming from functions, with scaler type, having a scaled

output for position from 0 to n-1 column number or row number.

Also, auto detection of rows number, is based on possible sizes, with other things, it is not an exact

science and it can be wrong, even if related scalers are not detected or are not rights.

SAD 8061 – 8065 / SAD806x

 46

‘Element Data’ part looks like the following one:

This is a result where scalers are not detected. Columns and rows label are defaulted.

SAD 8061 – 8065 / SAD806x

 47

And a result with labelled rows and columns, based on scalers and their input values (Function 037

and Function 036).

Not other specificity exists, but you can see the interest to have the right scaler set at this level.

SAD 8061 – 8065 / SAD806x

 48

‘Element Properties’ part is the following one:

Another time, for something like all text fields, by using shortcut ‘Ctrl-Shift-U’ shortcut on selected

text, text will be upper cased, with ‘Ctrl-U’ it will be lower cased.

Generic properties are like following:

‘Label’ : Auto generated by default, based on auto numbering. It will be visible at the

element address in the output.

It will be exported as main description, and inside comment in TunerPro.

By using shortcut ‘Ctrl-R’ shortcut in this place, the related repository will be searched for a matching

based on ‘Short Label’. In our case ‘Tables Repository’.

‘Short Label’ : Auto generated by default, based on auto numbering. It will be visible in

code when element is used, and for sure at the element address too.

It will be exported with ‘Label’ inside comment in TunerPro, because it has no equivalent in

TunerPro.

By using shortcut ‘Ctrl-R’ shortcut in this place, the related repository will be searched for a matching

based on ‘Short Label’. In our case ‘Tables Repository’.

‘Skip’ : When skipped, user defined definition for element is ignored at

disassembly. Auto detection comes back to override the defined element.

‘Comments’ : Auto generated by default, with address in this case. It will be visible at the

element address in the output only if ‘Output Comments’ is checked.

It will be exported preceded with ‘Label’ and ‘Short Label’ in TunerPro, to keep trace of everything.

By using shortcut ‘Ctrl-R’ shortcut in this place, the related repository will be searched for a matching

based on ‘Short Label’. In our case ‘Tables Repository’.

SAD 8061 – 8065 / SAD806x

 49

Table’s specific properties are like following:

‘Columns Number’ : Auto detected, by direct read in code, columns number is

one of the main information for table.

‘Rows Number’ : Auto detected, rows number is one of the main information

for table.

‘Word’ : Checked, table is declared as word one, word output,

otherwise it is declared as byte output. Detection is based on related routines.

‘Signed’ : Checked, output is declared as signed, otherwise it is

declared as unsigned. Detection is based on related routines.

‘Scale’ : Formula to obtain the right scaled output value. Scaled value will

appear in the output.

By using shortcut ‘Ctrl-R’ shortcut in this place, and on all related ‘Scale’ fields, the ‘Conversion

Repository’ will be searched entirely.

‘Columns Units’ : This is the data unit for the related column input, which is only used

in this place and for TunerPro.

By using shortcut ‘Ctrl-R’ shortcut in this place, and on all related ‘Units’ fields, the ‘Units Repository’

will be searched entirely.

‘Rows Units’ : This is the data unit for the related row input, which is only used in

this place and for TunerPro.

By using shortcut ‘Ctrl-R’ shortcut in this place, and on all related ‘Units’ fields, the ‘Units Repository’

will be searched entirely.

‘Cells Units’ : This is the data unit for the output, for cells, which is only used in

this place and for TunerPro.

By using shortcut ‘Ctrl-R’ shortcut in this place, and on all related ‘Units’ fields, the ‘Units Repository’

will be searched entirely.

‘Columns Scaler’ : Auto detected, this is the scaler function for columns. Specific

format is used here, a clickable label and a clickable button. To see the complete description of the

scaler, just move the move over the button. To open the related function, just click on the label

(when a scaler is in place). To select a new scaler (function should already exist), just click on the

button to access to the ‘Scaler Search’.

‘Rows Scaler’ : Auto detected, this is the scaler function for columns. Everything

described for ‘Columns Scaler’ applies to ‘Rows Scaler’.

SAD 8061 – 8065 / SAD806x

 50

‘Scaler Search’:

When clicking on the scaler button, you can access to its search, which is something like a repository

search, with a text search and a result.

By default, selected function ‘Short Label’ is used for searching, because the number of results is

limited for performance reasons.

To search another function, just update the text search part and then, open the ‘Related Scalers’.

Search is done on many properties of the function.

You will say that ‘MAF Transfer’ function FN036 is not a scaler, and you are right, search is done on all

available functions. But like this, you can see what appears, when the mouse is over an element in

the list.

The ‘None’ element, permits to remove the scaler on the table.

SAD 8061 – 8065 / SAD806x

 51

‘Element Information’ for Table:

Tables possess an additional ‘Element Information’ tab too, which includes additional details grabbed

during disassembly and interessant to be known.

In this case, we discover, it has been auto detected with both scalers. We discover which register is

used as output value too. For sure, when labels are redefined, elements appear translated here.

SAD 8061 – 8065 / SAD806x

 52

Table specificities:

No specificity at all, except scalers.

SAD 8061 – 8065 / SAD806x

 53

‘Tables’ category menu:

No specificity at all.

SAD 8061 – 8065 / SAD806x

 54

‘Table’ element menu:

No specificity at all.

SAD 8061 – 8065 / SAD806x

 55

Structures:

Structures are non-generic elements, in fact neither a scalar, nor a function, nor a table.

Scalars, functions and tables can be described by a structure, but the opposite is not always true.

Structures are a set of scalars assembled in different ways, sometimes with rules, sometimes not.

Routines using them are specific too. Even if they can be identified, they have so many different

types, than it is really difficult to manage them properly, compared to routines used for functions

and tables.

Main information for structures are its definition, just called ‘Structure’, which describes what is

where and with which rules and its occurrence number ‘Number’, the number of times it repeats to

give the whole structure.

Because we are disassembling based on Intel instructions, word values are store low byte first (LSB in

TunerPro) in assembly.

Structures auto detection is globally basic, but Structures definitions auto detection is something

much more complex, because it requires to fully understand the routine(s), which are using the

structure.

This is why some tries are done to complete these definition and number, but they often finish with a

default definition (1 byte or 1 word) and a default number (1), but it remains a good start to analyze

related routine and to prepare future signatures.

SAD 8061 – 8065 / SAD806x

 56

‘Element Data’ part looks like the following one:

This is a basic data output and as you can see, when ‘Comments’ indicates that, it not fully

recognized.

SAD 8061 – 8065 / SAD806x

 57

This one is much better, you can see that data output evolves based on structure definition.

With conditional rules, it can give other more complex things.

SAD 8061 – 8065 / SAD806x

 58

‘Element Properties’ part is the following one:

Another time, for something like all text fields, by using shortcut ‘Ctrl-Shift-U’ shortcut on selected

text, text will be upper cased, with ‘Ctrl-U’ it will be lower cased.

Generic properties are like following:

‘Label’ : Auto generated by default, based on auto numbering. It will be visible at the

element address in the output.

By using shortcut ‘Ctrl-R’ shortcut in this place, the related repository will be searched for a matching

based on ‘Short Label’. In our case ‘Structures Repository’.

‘Short Label’ : Auto generated by default, based on auto numbering. It will be visible in

code when element is used, and for sure at the element address too.

By using shortcut ‘Ctrl-R’ shortcut in this place, the related repository will be searched for a matching

based on ‘Short Label’. In our case ‘Structures Repository’.

‘Skip’ : When skipped, user defined definition for element is ignored at

disassembly. Auto detection comes back to override the defined element.

‘Comments’ : Empty by default, it indicates that definition detection has not been a

success, when its value is ‘Structure definition was defaulted’. It will be visible at the element address

in the output only if ‘Output Comments’ is checked.

By using shortcut ‘Ctrl-R’ shortcut in this place, the related repository will be searched for a matching

based on ‘Short Label’. In our case ‘Structures Repository’.

Structures specific properties are like following:

SAD 8061 – 8065 / SAD806x

 59

‘Structure’ : Auto detected if possible, otherwise it is indicated with ‘Comments’.

It is the definition of the structure, which describes what is where and with which rules, in a

comprehensible dedicated text format.

‘Number’ : Auto detected if possible, but not always used, based on type of

definition. It is the number of times it repeats to give the whole structure.

‘Yellow Smiley’ image : With mouse over this image, you have some information, about

how to write the structure definition. When clicking on it, you have a window with the same

information. It is a good starting point.

SAD 8061 – 8065 / SAD806x

 60

Structure Definition format:

Following item keywords are available (do not use ‘ character):

- Decimal ones, with a decimal output:

‘Byte’ : Byte Item (1 Byte),

‘Word’ : Word Item (2 Bytes),

‘SByte’ : Signed Byte Item (1 Byte),

‘SWord’ : Signed Word Item (2 Bytes)

- Hexadecimal ones, with an hexadecimal output:

‘ByteHex’ : Byte Item with lowered output (1 Byte),

‘WordHex’ : Word Item with lowered output (2 Bytes),

‘Hex’ : Hexadecimal Item (1 Byte),

‘HexLsb’ : Hexadecimal Item with Lsb First 2 by 2 (1 Byte)

- Other ones, with a specific meaning:

‘Ascii’ : 1 Byte gives an Ascii output,

‘Skip’ : 1 Byte Item is ignored,

‘Empty’ : 1 Empty Item, not related with data, only for formatting,

‘"STRING"’ : 1 string as output, not related with data (STRING here),

‘"\n"’ : 1 carrier return, not related with data,

‘Vect8’ : 2 Bytes for a vector address. First operation will be on bank 8,

‘Vect1’ : 2 Bytes for a vector address. First operation will be on bank 1,

‘Vect9’ : 2 Bytes for a vector address. First operation will be on bank 9,

‘Vect0’ : 2 Bytes for a vector address. First operation will be on bank 0

VectX keywords, will permit to extend disassembly on the detailed vectors (or routines), if they were

not found before. You will see that a specific type of structure, which is ‘Vector List’, is generated, it

is a main part of disassembly on works on this base.

Following separators keywords are available, they permit to keep code more clear (do not use ‘

character):

- ‘ ’ : Space one,

- ‘,’ : Comma one,

- Carrier return : Carrier return one

Multiplying items principle:

 Instead of writing ‘Hex,Hex,Hex,Hex’, you can write ‘Hex:4’. This is the case for all types of

items, by adding after the item keyword ‘:N’ where N is the number of desired items.

Conditional rules principle:

SAD 8061 – 8065 / SAD806x

 61

 To use condtional rules, you have to use following architecture:

‘If (<CONDITION>:#BytePosition) { Items list (when <CONDITION>:#BytePosition) is true) } Else { Items

list (when <CONDITION>:#BytePosition is false) }

 You can include new conditions inside items lists, because a conditional rule is managed like

an item itself.

Condiction definition for <CONDITION> and #BytePosition:

 <CONDITION> can have limited number of values, based what is really required for a

structure. It is essentially a bit check or a value comparison and it can be negated, like following:

- ‘B0’ / ’!B0’ : B0 = 1 / B0 = 0

- ‘B1’ to ‘B7’ : B1 = 1 to B7 = 1, so B2, B3, B4, B5, B6 too

- ‘!B1’ to ‘!B7’ : B1 = 0 to B7 = 0, so B2, B3, B4, B5, B6 too

- ‘00’ / ‘!00’ : Related Byte = 0x00 / Related Byte <> 0x00

- ‘FF’ / ‘!FF’ : Related Byte = 0xFF / Related Byte <> 0xFF

- ‘01’ to ‘FE’ : It works also for other values, except in range B0 to B7.

- ‘!01’ to ‘!FE’ : It works also for other values, except in range B0 to B7.

#BytePosition is the Byte position to test inside the current structrue occurrence.

If structure defition is 2 Bytes with a number of 3, you can only set a test for Byte 1 or Byte 2.

It can become a bit complicated with variable size occurences, but in fact routine using

structure is working like that.

For sure for each occurrence, the right value will be checked.

Some example of conditional rule:

If (B0:2) { Byte:2,Word } Else { Byte:2,Word:2 }

which can be written

If (B0:2) {

Byte:2,Word

} Else {

Byte:2,Word:2

}

or

If (!B0:2) { Byte:2,Word:2 } Else { Byte:2,Word }

With a bit of practicing, things will become more clear.

SAD 8061 – 8065 / SAD806x

 62

Structure specificities:

A described previously, you have different types of structures, including ‘Vectors List’.

But also classical calibration structure, related with RBases.

SAD 8061 – 8065 / SAD806x

 63

And main part of them, not related with RBases.

As you can see they use by default specific ‘Label’ and ‘Short Label’ based on their type, to help

differenciating them.

SAD 8061 – 8065 / SAD806x

 64

‘Structures’ category menu:

No specificity at all.

SAD 8061 – 8065 / SAD806x

 65

‘Structure’ element menu:

No specificity at all.

SAD 8061 – 8065 / SAD806x

 66

Routines:

Routines do not exist in a real way in assembled code. An assembly is just a huge quantity of

operations, not written like it would be with a modern tool, grouped inside routines. SAD 806x tries

to recreate a kind of operations architecture, were it appears to be nothing. Based on calls, gotos and

return instructions, something begins to appear and ‘Routines’ that come to this definition are some

kind of best of.

A real routine would be a part of code, called many time and we have some routines like this. For

example, Tables or Functions are detected based on dedicated routines, previously detected.

Basically, a routine is defined by the address of its first operation.

In SAD 806x routines are used to add some labels in output, as far as obtaining a better disassembly

by adding new routines or setting up their parameters, if they have some.

Another use of them is at comparison level, because between strategies, if some routines are similar,

you have chances to use the same calibration elements in them. So they are an excellent base to

compare strategies.

Some known routines are fixed at their address level vs bank number vs EEC version, so they will be

directly named and given as result.

Another way to create them is to work with signatures. Tables or Functions routines are detected

through hard coded signatures, but you can create new signatures, inside definition to auto identify

known routines shared between strategies.

SAD 8061 – 8065 / SAD806x

 67

‘Routine Properties’ part is the following one:

Generic properties are like following:

‘Label’ : Auto generated by default, based on auto numbering or based on known

addresses. It will be visible at the routine address in the output.

‘Short Label’ : Auto generated by default, based on auto numbering or based on known

addresses. It will be visible in code when routine is called, and for sure at the routine address too.

‘Skip’ : When skipped, user defined definition for routine is ignored at disassembly.

Auto detection comes back to override the defined routine.

‘Comments’ : Auto generated by default, with address in this case. It will be visible at the

element address in the output only if ‘Output Comments’ is checked.

Routines specific properties are like following:

‘Advanced’ : Checked, it indicates that routine is an advanced one, that it

is related with special scalars or structures, function or tables, or that it basically has arguments

when called. It is a read only information, which can be managed only with ‘Advanced Properties’

button. It is auto detected or can be generated by signatures.

‘Embedded Byte Arguments Number’ : This is the number of arguments, provided when routine is

called. It is a read only information, which can be managed only with ‘Advances Properties’ button. It

is auto detected or can be generated by signatures. ‘Override’ checkbox permit to order SAD 806x to

prefer updated number (built through ‘Advanced Properties’ form), instead of detected one.

SAD 8061 – 8065 / SAD806x

 68

Because it is a sensible information, which can broke the disassembly, by putting bad operations at

bad addresses, ‘Override’ option should be managed properly.

SAD 8061 – 8065 / SAD806x

 69

‘Routine Advanced Properties’ form is the following one:

It is accessible, through the ‘Advanced Properties’ button. In our cases we will start from a Byte

Function Reader, which is a good basis for description.

The left part of the screen is a list of possible Inputs for the routine. The right one will detail

properties for these inputs. To add a new Input, just right click on the right place on the list to access

the ‘New Element’ menu option for Inputs.

Basically known functions routines have only 1 input function (its address in fact) and can have

arguments, known table routines have only 1 input table (its address in fact) and no arguments.

It is possible to setup a routine with everything in multiple samples, but for now realistic things will

be easier to explain.

Principle is simple, with a routine like this one, we are able to detect, for each call, a function and its

parameters, so it is interesting to setup this, when possible.

SAD 8061 – 8065 / SAD806x

 70

‘Input Function’ properties can be described like following:

- ‘Address Input Register/Argument’ : This is the register containing function

address when routine is called. It is always a generic register (erased and rewritten for

generic puprose). Here ‘R36’ is one of them for this strategy. It could also be an

Argument, when routine uses arguments and in this case is should be written ‘Ar01’ to

‘Ar99’, you will understand why.

- ‘Input Register/Argument’ : This is the register containing the Input

value of the function, still a generic one. It is interesting for SAD 806x for tracing source

of data for function, as far for proper recognizing. Argument can be used too.

- ‘Output Register’ : This is the register that will receive the

Output result of the function, still a generic one. SAD 806x uses it to follow data, to

detect scalers, as far for proper recognizing.

- ‘Byte’ : Checked, it will define if the provided function is a

byte one. Otherwise, it will be a word one.

- ‘Signed Input’ : Checked, it will define if the provided function has a

signed input. Otherwise, it will have an unsigned one.

- ‘Signed Output’ : Checked, it will define if the provided function has a

signed output. Otherwise, it will have an unsigned one.

- ‘Forced Rows Number’ : Empty, SAD 806x will detect rows number, filled,

this rows number will be used, this is the case when rows number is hard coded in

routine.

- ‘Forced Input Scale’ : When filled, it will apply to all related functions.

- ‘Forced Output Scale’ : When filled, it will apply to all related functions.

- ‘Forced Input Units’ : When filled, it will apply to all related functions.

SAD 8061 – 8065 / SAD806x

 71

- ‘Forced Output Units’ : When filled, it will apply to all related functions.

As reminder, a routine with only 1 ‘Input Function’, with or without ‘Input Arguments’, will be

managed as a Function routine, to detect functions.

‘Add / Update’ button permits to validate creation or update. Do not forget it between inputs or

before closing ‘Advanced Properties’ form.

SAD 8061 – 8065 / SAD806x

 72

‘Input Table’ properties can be described like following:

- ‘Address Input Register/Argument’ : This is the register containing table address

when routine is called. It is always a generic register (erased and rewritten for generic

puprose). Here ‘R3c’ is one of them for this strategy. It could also be an Argument, when

routine uses arguments and in this case is should be written ‘Ar01’ to ‘Ar99’, you will

understand why.

- ‘Columns Number Register/Argument’ : This is the register containing the columns

number of the table, still a generic one. It is required for SAD 806x for table recognizing.

Argument can be used too.

- ‘Columns Input Register/Argument’ : This is the register containing the column

Input value of the table, still a generic one. It is interesting for SAD 806x for tracing

source of data to find scaling functions, as far as for proper recognizing. Argument can be

used too.

- ‘Rows Input Register/Argument’ : This is the register containing the row Input

value of the table, still a generic one. It is interesting for SAD 806x for tracing source of

data to find scaling functions, as far as for proper recognizing. Argument can be used too.

- ‘Output Register’ : This is the register that will receive the

Output result of the table, still a generic one. SAD 806x uses it to follow data, as far as for

proper recognizing.

- ‘Word’ : Checked, it will define if the provided table

is a word one. Otherwise, it will be a byte one.

- ‘Signed’ : Checked, it will define if the provided table

has a signed output. Otherwise, it will have an unsigned one.

SAD 8061 – 8065 / SAD806x

 73

- ‘Forced Columns Number’ : Empty, SAD 806x will search for columns number,

filled, this columns number will be used, this is the case when columns number is hard

coded in routine.

- ‘Forced Rows Number’ : Empty, SAD 806x will detect rows number, filled,

this rows number will be used, this is the case when rows number is hard coded in

routine.

- ‘Forced Scale’ : When filled, it will apply to all related tables.

- ‘Forced Columns Units’ : When filled, it will apply to all related tables.

- ‘Forced Rows Units’ : When filled, it will apply to all related tables.

- ‘Forced Cells Units’ : When filled, it will apply to all related tables.

As reminder, a routine with only 1 ‘Input Table’, with or without ‘Input Arguments’, will be managed

as a Table routine, to detect tables.

SAD 8061 – 8065 / SAD806x

 74

‘Input Scalar’ properties can be described like following:

- ‘Address Input Register/Argument’ : This is the register containing scalar address

when routine is called. It is always a generic register (erased and rewritten for generic

puprose). It could also be an Argument, when routine uses arguments and in this case is

should be written ‘Ar01’ to ‘Ar99’, you will understand why.

- ‘Signed’ : Checked, it will define if the provided scalar

has a signed output. Otherwise, it will have an unsigned one.

- ‘Byte’ : Checked, it will define if the provided scalar

is a byte one. Otherwise, it will be a word one.

- ‘Forced Units’ : When filled, it will apply to all related

scalars.

- ‘Forced Scale’ : When filled, it will apply to all related

scalars.

SAD 8061 – 8065 / SAD806x

 75

‘Input Structure’ properties can be described like following:

- ‘Address Input Register/Argument’ : This is the register containing structure

address when routine is called. It is always a generic register (erased and rewritten for

generic puprose). It could also be an Argument, when routine uses arguments and in this

case is should be written ‘Ar01’ to ‘Ar99’, you will understand why.

- ‘Number Register/Argument’ : This is the register containing the structure

repeat number, still a generic one. It is for SAD 806x for structure recognizing. Argument

can be used too.

- ‘Forced Number’ : This is the value for the structure repeat

number. It can be hard coded to prevent SAD 806x to detect it. Then it overrides previous

‘Number Register/Argument’ value.

- ‘Structure’ : This is the structure definition, that will be

used. SAD 806x does not attach a structure definition to a routine automatically, so it is

required here.

- ‘Yellow Smiley’ image : With mouse over this image, you have some

information about, how to write the structure definition. When clicking on it, you have a

window with the same information. It is a good starting point.

SAD 8061 – 8065 / SAD806x

 76

‘Input Argument’ properties can be described like following:

- ‘Position’ : This is the position of the argument for the call. First one is

1, second one 2 and so on…

- ‘Word’ : Checked, argument will be a 2 bytes one.

- ‘Output as Pointer’ : On autodetection default is true. It permits to be managed

as a pointer, which gives a different text output.

- ‘Matching Code’ : This is the generated code, to be reused in other inputs, it is

read only and based on ‘Position’. Now, you understand ‘Ar01’ to ‘Ar99’.

- ‘Encryption’ : Sometimes arguments are provided to be used directly,

without operation on their value, sometimes not, arguments are encrypted in this case.

‘Unknown’ : With ‘Unknown’ Encryption, SAD 806x tries to detect it. If it is not

possible, it will be managed as ‘Standard’.

‘Standard’ : It is the case when argument is not encrypted.

‘Mode0’ : This mode is not for an encryption, but to set that parameter is a

calibration element, which is not using an RBase.

SAD 8061 – 8065 / SAD806x

 77

‘Mode1’ : Is not managed for now and will be processed as ‘Standard’,

because I have never seen it until now.

‘Mode2’ : Is not managed for now and will be processed as ‘Standard’,

because I have never seen it until now.

‘Mode3’ : Just an example.
f03a (3a,f0) => F[0+((f - 8) * 10) / 8] => F[0+70/8] => F[0+E] =>

FE + 03a

010c (0c,01) => Not compatible => [10c]

‘Mode4’ : Just an example.
44,22 => 2244 => 2 + 244 => f2(f(0+2)) + 244 => RBase f2 + 244

44,32 => 3244 => 3 + 244 => f2(f(0+3-1)) + 1244 => RBase f2 + 1244

‘Mode4Struct’ : Extension of ‘Mode4’, to provide address in structure .
44,22 => 2244 => [2244],[2246] => Values to read in a structure

 [2244] => 47,26 => 2647 => 2 + 647 => f2(f(0+2)) + 647 =>

RBase f2 + 647

 [2246] => 12,01 => [112] => Input Register

‘Encryption’ is correctly autodetected, normally no need to manage it.

Do not forget that arguments can be reused, with ‘ArXX’ in other inputs.

SAD 8061 – 8065 / SAD806x

 78

‘Routines’ category menu:

No specificity at all.

SAD 8061 – 8065 / SAD806x

 79

‘Routine’ element menu:

Even if it not possible to ‘Copy (Xdf)’ a routine, because this type of object is not managed through

TunerPro, another option has been added for routines, it is ‘Copy (signature)’.

Signature is not in another tool, it can be a part for SAD 806x definition. This is the ‘Routines

Signatures’ category, which will be seen later on.

Signature of a routine is the code, which will be common for all strategies, for the same routine or

type of routine.

‘Copy (signature)’ permits to paste on ‘Routines Signatures’, an exact copy of the related routine,

including its advanced parameters and in addition, the hexadecimal code at the beginning of the

routine, as base of the signature that will have to be reviewed.

When using this ‘Copy (signature)’ you will understand its interest for working on signatures.

SAD 8061 – 8065 / SAD806x

 80

Operations:

An operation is an instruction + its parameters (if available) + its arguments (if available).

Routines are a set of operations.

For sure an operation has an address in the binary, this is in fact the only thing that is interesting in

this part.

After disassembly, unlike routines, operations are not loaded in SAD 806x elements tree. This is

because of the huge number of operations which are detected and because nothing specific can be

setup on them, except basic information.

But it can be interesting to declare existing operations, to set their labels or comments and to declare

new operations, when they were missing.

If you see a block of undisassembled code, it can be a structure or code. On my side, I create a basic

routine at this address and after redisassembly, I check if disassembly has be well managed around

this. So no need to create operation here. But sometimes, you can see a skip or goto, original or

patched, that will ignore 1 or 2 operations, and there, it interesting to see what was ignored, there I

will create the missing operation, because, SAD 806x, which follows the code, can not arrive at this

place, except if we declare to do it.

SAD 8061 – 8065 / SAD806x

 81

‘Operation Properties’ part is the following one:

Generic properties are like following:

‘Label’ : Auto generated by default, based on auto numbering or based on known

addresses. It will be visible at the operation address in the output, like a header.

‘Short Label’ : Auto generated by default, based on auto numbering or based on known

addresses. It will be not be visible in the output.

‘Skip’ : When skipped, user defined definition for operation is ignored at

disassembly. Auto detection comes back to override the defined operation.

‘Comments’ : Empty by default. It will be visible at the element address in the output only

if ‘Output Comments’ is checked.

SAD 8061 – 8065 / SAD806x

 82

‘Operations’ category menu:

No specificity at all.

SAD 8061 – 8065 / SAD806x

 83

‘Operation’ element menu:

No specificity at all.

SAD 8061 – 8065 / SAD806x

 84

Registers:

A register is an EEC memory address, not related with rom, used to share data or information inside

program. Main part of registers have one unique purpose in our case, which makes them interesting

to identify. The other part are generic or temporary registers (erased and rewritten), which have to

be managed but, only to find the other ones.

I will not detail for now the related addresses, but globally on EECV addresses start at 0x0000 to go

to 0x1FFF and another part can be used from 0xF000 to 0xFFFF.

A part of these addresses are reserved and detected like this. But that is the other part which will

help us to understand disassembly.

After disassembly, like routines, only a small part of detected registers are loaded in SAD 806x

elements tree. Functions inputs, outputs, like Tables inputs, outputs ar kept to be inserted in

registers list.

SAD 8061 – 8065 / SAD806x

 85

‘Register Properties’ part is the following one:

Generic properties are like following:

‘Label’ : By default it is what will appear in output. It will be visible each time register

is used in output, except if specific ‘Byte Dedicated Label’ or ‘Word Dedicated Label’ are defined.

‘Register Address’ : Register are working a bit differently, it is not possible to update their

address on the top of the screen and they have no bank, but a specific code. So you have to set it or

update it directly in this place.

As I have described, range for addresses is checked, based on what was described previously, but

another use can be done here for addresses, you can use this type of setup : ‘XX+YY’, for example

For example [Ra3+12] has to use address a3+12. ‘Ra3’ is some kind of constant (RConst) and ‘12’ is its

gap to the defined register. Gap can have all values inside registers addresses range.

‘Skip’ : When skipped, user defined definition for register is ignored at disassembly.

Auto detection comes back to override the defined register.

‘Comments’ : Empty by default. It will be visible only in registers lists, if option ‘Register

list output’ was chosen in definition global properties.

Specific properties are like following:

‘Bit Flags’ : Exactly the same setup than for scalars, but there, it permits to manage bit

flags and displays their labels in output instead of ‘Label’, ‘Byte Dedicated Label’ or ‘Word Dedicated

Label’, when register is used in bit operations.

‘Byte Dedicated Label’ : In some strategies, registers have not the same meaning when they are

used in byte operations versus word operations. This is why additional labels were added. If ‘Byte

Dedicated Label’ is set, it will be used in output for byte operations, otherwise ‘Label’ will be used.

SAD 8061 – 8065 / SAD806x

 86

‘Word Dedicated Label’ : If it is set, it will be used in output for word operations, otherwise ‘Label’

will be used.

SAD 8061 – 8065 / SAD806x

 87

‘Element Information’ for Register:

Registers possess an additional ‘Element Information’ tab too, which includes additional details

grabbed during disassembly and interessant to be known.

In this case, we discover, register is used many times as input for functions, no surprise here, R0f is

RPM, it can be seen quickly by looking at these functions. If a register is used directly as input for

tables, you can be sure it is a dedicated scaler register. For sure, when labels are redefined, elements

appear translated here.

SAD 8061 – 8065 / SAD806x

 88

‘Registers’ category menu:

No specificity at all.

SAD 8061 – 8065 / SAD806x

 89

‘Register’ element menu:

No specificity at all.

SAD 8061 – 8065 / SAD806x

 90

Other addresses:

Sometimes, we know that something is present at an address, but we do not know exactly,

what it is at the moment, or we want to keep trace of an address without entering more details now,

the other address is the perfect place to do it.

It is massively used after a SAD directive file import, for unrecognized addresses or elements.

At disassembly, when SAD 806x detect something, element, operation and when it was not properly

defined, it looks at this place, to search for and existing address and to enrich its element.

Definition of this type of thing, is really limited, but totally necessary for some cases.

SAD 8061 – 8065 / SAD806x

 91

 ‘Other Addresses’ part is the following one:

Generic properties are like following:

‘Label’ : It will appear in output at specified address, if nothing else was declared.

‘Skip’ : When skipped, it is ignored at disassembly.

‘Comments’ : It will appear in output at specified address, if nothing else was declared and

if ‘Output Comments’ is checked.

SAD 8061 – 8065 / SAD806x

 92

‘Other Addresses’ category menu:

No specificity at all.

SAD 8061 – 8065 / SAD806x

 93

‘Other Address’ element menu:

No specificity at all.

SAD 8061 – 8065 / SAD806x

 94

Routines Signatures:

 ‘Routines Signatures’ part is the most complicated part in this application, because it is

related with a definition and because it should be possible to duplicate it on others.

Purpose of a routine signature, is to detect a routine on disassembly, based on some kind of

hexadecimal signature and to give it a name and a meaning. So it should be able based on a well

written signature to automatically create a routine, in the ‘Routines’ part, with a well-defined and

pre-defined ‘Label’, ‘Short Label’ and ‘Comments’.

Because a routine can be advanced, like it was seen in ‘Routines’ part, detected routine should get all

required advanced parameters directly, so it should be possible to pre-define them, even if it should

stay an option.

But why not in this case, being able to attach elements to this routine, too, because this routine can

contain use of elements and because it is strange to detect a known routine and to let its elements

unknown. So it should be possible to pre-define elements inside this routine.

‘Routines Signatures’ part shall be able to do this, but as you will understand, creating a proper

signature, which could be shared between different definitions and different technologies, is not so

easy. In a perfect world, with the perfect list of ‘Routines Signatures’, a definition template could be

able to disassemble everything properly without any additional human action. Just send me this

template when you have finished it ;)

SAD 8061 – 8065 / SAD806x

 95

‘Routines Signature’ part is the following one:

Generic properties are like following:

‘Label’ : Auto detected routine, will be created with this ‘Label’. Output will also

work like for a classical routine.

‘Short Label’ : Auto detected routine, will be created with this ‘Short Label’. Output will

also work like for a classical routine.

‘Skip’ : When skipped, signature will not be searched for.

‘Comments’ : Auto detected routine, will be created with this ‘Comments’. Output will

also work like for a classical routine, when ‘Output Comments’ duplicated on auto detected routine

too, is checked.

Routines signature specific properties are like following:

‘Advanced’ : Checked, it indicates that auto detected routine will be an advanced

one, that it is related with special scalars or structures, functions or tables, or that it basically has

arguments when called. It is a read only information, which can be managed only with ‘Advanced

Properties’ button.

‘Signature’ : This is the hexadecimal signature, which will permit to detect a

routine. It will be described later on. Code written here should be unique in binary, to permit to

detect only one routine and not another number of identical routines with same code.

‘Yellow Smiley’ image : With mouse over this image, you have some information about,

how to write the signature. When clicking on it, you have a window with the same information. It is a

good starting point.

SAD 8061 – 8065 / SAD806x

 96

SAD 8061 – 8065 / SAD806x

 97

‘Routines Signature’ advanced properties:

By using button ‘Advanced Properties’, like for routines, it permits to access to the related form.

This form is composed, with the following elements:

- Extended signature text box : to fill in Signature in this place.

- Signature Elements Detection List : list of all related elements, which will be created on

detected routine or associated with it.

- Related elements properties : properties for all related properties.

- ‘Yellow Smiley’ image : still the same meaning.

- ‘Add / Update’ button : to validate element creation / update.

Just before describing possible elements which can be added, I will just describe an interesting

specificity in signature. An example is better. This is what will output after disassembly:

Hexadecimal code for this part is the following one :

F2A100242AC3DA502AC3DA702AC3DA5600C3DA7600F3F0

SAD 8061 – 8065 / SAD806x

 98

Not really usable, so yes like this it is better:

If you remember well, this code and everything in fact, after basic disassembly, can come from the

auto detected routine, with the ‘Copy (signature)’ from the related routine menu.

Just by using this code in signature I should be able to identify this routine, but only in that binary,

but I want more, I want to create a scalar, at address ‘0x2400’, and I want to identify 2 registers [6d0]

and [6f0], to be reused in routine definition.

For this I will update the signature:

#XX# things are ‘Signature parameters’, one for each byte, they can have any value and ‘..’ things are

like one byte that can have any value too.

With that, my signature becomes much more generic (I hope not too much, this is the danger) and it

can probably being reused in other strategies.

‘Signature parameters’ can now be reused in signature elements definition.

So my scalar address 0x2400 will be ‘#01##02#’.

Because SAD806x seems to know value for ‘Rda’, [6d0] will be ‘#06#+#04#’ and [6f0] will be

‘#06#+#05#’.

Complicated, yes, but necessary.

SAD 8061 – 8065 / SAD806x

 99

Like routines, added input elements can be like following:

- Input Argument

Nothing different here compared to the setup on ‘Routines’ and now real way to reuse

‘Signature parameters’ in this place.

- Input Structure

 Nothing different here compared to the setup on ‘Routines’, using Argument (‘ArXX’) is still

possible, but in addition, ‘Signature parameters’ can be used to fill in automatically ‘Address Input

Register’, ‘Number Register’ or ‘Forced Number’.

- Input Table

 Nothing different here compared to the setup on ‘Routines’, using Argument (‘ArXX’) is still

possible, but in additon, ‘Signature parameters’ can be used to fill in automatically ‘Address Input

SAD 8061 – 8065 / SAD806x

 100

Register’, ‘Columns Number Register’, ‘Columns Input Register’, ‘Rows Input Register’, ‘Output

Register’, ‘Forced Columns Number’ or ‘Forced Rows Number’.

- Input Function

 Nothing different here compared to the setup on ‘Routines’, using Argument (‘ArXX’) is still

possible, but in addition, ‘Signature parameters’ can be used to fill in automatically ‘Address Input

Register’, ‘Input Register’, ‘Output Register’ and ‘Forced Rows Number’.

- Input Scalar

 Nothing different here compared to the setup on ‘Routines’, using Argument (‘ArXX’) is still

possible, but in addition, ‘Signature parameters’ can be used to fill in automatically ‘Address Input

Register’.

SAD 8061 – 8065 / SAD806x

 101

But unlike routines, it is now possible to setup directly calibration elements, which will be directly

created where it is appropriated, when the signature is detected.

These calibration elements, will be generated based on this setup, so their setup will be the same

than for the related category:

- Internal Structure

Nothing different here compared to the setup on ‘Structures’, but ‘Signature parameters’ can

be used to fill in automatically ‘Address’, ‘Number’ and the new property ‘Bank’. On Signature

detection, it will generate automatically the defined structure, in the current definition.

- Internal Table

 Nothing different here compared to the setup on ‘Tables’, but ‘Signature parameters’ can be

used to fill in automatically ‘Address’, ‘Columns Number’, ‘Rows Number’ and the new property

‘Bank’. On Signature detection, it will generate automatically the defined table, in the current

definition.

- Internal Function

SAD 8061 – 8065 / SAD806x

 102

Nothing different here compared to the setup on ‘Functions’, but ‘Signature parameters’ can

be used to fill in automatically ‘Address’, ‘Rows Number’ and the new property ‘Bank’. On Signature

detection, it will generate automatically the defined function, in the current definition.

- Internal Scalar

Nothing different here compared to the setup on ‘Scalars’, but ‘Signature parameters’ can be

used to fill in automatically ‘Address Parameters’ and the new property ‘Bank’. On Signature

detection, it will generate automatically the defined scalar, in the current definition.

SAD 8061 – 8065 / SAD806x

 103

‘Element Information’ for ‘Routines Signatures’:

‘Routines Signatures’ possess an additional ‘Element Information’ tab too, which includes additional

details grabbed during disassembly and interessant to be known.

In this case, it permits to see if signature was detected one time or more and if it was one time,

which routine was generated by it in definition.

SAD 8061 – 8065 / SAD806x

 104

Writing a signature:

Starting from the basis.

As you can see, signature detection is based on a regular expression search, therefore signature and

compared binary code should be managed as text string. For sure the best way to do it is through

hexadecimal code.

Signature will also mainly be composed with bytes written in hexadecimal from 00 to FF. To have a

code more clear to read or to understand, spaces ‘ ‘, commas ‘,’ and carrier returns can be inserted

between bytes, they will be removed on comparison.

Like for the previous example,

a signature, which will match at 100% here, is the whole code itself.

SAD 8061 – 8065 / SAD806x

 105

But it has no real interest, because it is not a generic code between strategies, 2400 which could be

an address, can be different in another strategy and registers will certainly be at different addresses.

I am not talking about instructions, which can change or other new instructions which could be

added, for bank change or other things.

So the first thing, is to be able to use generic values. Double dot ‘..’ can also be used to replace a

complete byte. ‘24’ can be replaced with ‘..’. But if you are sure, it will always start with ‘2’, you can

use ‘2.’ to replace ‘24’ too. Single dot ‘.’ means any character 1 time. Just be sure, your complete

signature has the right numbers of half bytes, at the end. The following signature will match here,

but probably with other routines too, no ?

The second thing is to be able to ignore some values. For example, you can imagine that in some

strategies, [6d6] and [6f6] are not reset (set to 0), like here, and the star ‘*’ will help you, it means 0

to 100 unknown half bytes. The following signature will match here, even if operations at ‘8 b201’

and ‘8 b205’ are not existing, but it becomes a bit too much generic, no ?

As it has already been described, signatures parameters can also be matched with values in binary to

be reused in elements. I will just remember you the syntax, inside the signature, still with one

parameter per byte, ‘#XX#’ with ‘XX’ as a decimal number. When matching, it will act exactly like if

the double dot ‘..’ was used a single time.

SAD 8061 – 8065 / SAD806x

 106

Both signatures will match for sure and all parameters will be filled with value, so it is not required

when you have the same value in code, to reuse the parameter another time, ‘#06#’ or ‘#03#’ in this

case, but it permits to get a closer matching. The second signature could match with more code,

which is not expected.

If you still remember well, this code and everything in fact, after basic disassembly, can come from

the auto detected routine, with the ‘Copy (signature)’ from the related routine menu.

Another interesting tool which will be described later on, can be found in main menu ‘Tools/Search

Signature’. It permits to directly search in binary a provided signature and in fact, to validate if the

written one is working or not.

SAD 8061 – 8065 / SAD806x

 107

‘Routines Signatures’ category menu:

No specificity at all.

SAD 8061 – 8065 / SAD806x

 108

‘Routines Signature’ element menu:

No specificity at all.

SAD 8061 – 8065 / SAD806x

 109

Elements Signatures:

 ‘Elements Signatures’ part is a bit simpler to use than ‘Routines Signatures’. Like its name

says, it permits to automatically detect calibration elements and to create directly their complete

definition when signature is detected on disassembly. But for sure, it is not the signature of the

calibration element itself, it is the signature of the code that is using it.

It is still based on some kind of hexadecimal signature, with same principle than for ‘Routines

Signatures’, which still remains to be unique for binary and if possible for other strategies, because

the goal is to duplicate them on definition templates, to better automatize disassembly.

The ‘Routines’, ‘Copy (signature)’ is not working here, it is dedicated to ‘Routines Signatures’, but it is

still possible to validate a signature through ‘Tools/Search Signature’.

Some elements are directly hardcoded in SAD 806x and will be added to new definition, for now

‘MAF Transfer’.

This hardcoded signatures can not be removed or updated, they are marked as ‘Forced’. But it is a

good base to create new ones.

So setup for an ‘Element Signature’, is basically, the signature itself and the definition of one

calibration element.

SAD 8061 – 8065 / SAD806x

 110

‘Element Signature’ part is the following one:

Generic properties are like following:

‘Label’ : The label of the signature, it will appear nowhere except here and in

‘Elements Signatures’ list. It will not be duplicated on generated element.

 ‘Skip’ : When skipped, signature will not be searched for.

‘Comments’ : The comment of the signature, it will appear nowhere except here and in

‘Elements Signatures’ list. It will not be duplicated on generated element.

Element signature specific properties are like following:

‘Forced’ : Checked, it indicates that is a provided and hardcoded signature. It

can not be removed or updated.

‘Element type’ combo box : On the right of ‘Forced’ checkbox, it indicates, which type of

element is detected. It is read only and based on the element setup done through button ‘Element

Properties’.

‘Signature’ : This is the hexadecimal signature, which will permit to detect an

element based on the code using it. Code written here should be unique in binary, to permit to

detect only one element.

‘Yellow Smiley’ image : With mouse over this image, you have some information about,

how to write the signature. When clicking on it, you have a window with the same information. It is a

good starting point.

SAD 8061 – 8065 / SAD806x

 111

SAD 8061 – 8065 / SAD806x

 112

‘Element Signature’ Element Properties:

By using button ‘Element Properties’, it permit to access to the related form.

This form is composed, with the following elements:

- Extended signature text box : to fill in Signature in this place.

- Element type selection list : list of all possible elements, which will be detected.

- Generic properties : ‘Label’, ‘Short Label’, ‘For 8061 or 8065’ and ‘For

Bank’ fields are generic ones, shared between all element types. ‘Label’, ‘Short Label’ will

be duplicated on detected element, other will be described.

- Selected element type properties : properties for selected element type.

- ‘Comments’ : Like ‘Label’ or ‘Short Label’, this text box is shared

between all types and will be duplicated on detected element like ‘Output Comments’. It

will do the same job after this on the element, like it was set up directly in definition.

- ‘Yellow Smiley’ image : still the same meaning.

- ‘Apply’ button : to validate creation / modification.

SAD 8061 – 8065 / SAD806x

 113

Jus before describing setup type by type, I will just describe what is main difference between the

‘Element Signature’ coding, compared to ‘Routine Signature’ coding.

‘Routine Signature’ coding uses signature parameters (‘#XX#’), which are values found in matching

code, but ‘Element Signature’ does not need them, it needs the address of the operation using or

including the related element. Keyword ‘#EAOP#’ will be used to do this and in fact it will replace the

whole operation inside the signature, it is something which is not possible at ‘Routine Signature’

level.

The couterpart for this, is that ‘Routine Signature’ permits to match signature with variable code

sizes, through ‘*’ keyword, but it is not possible with ‘Element Signature’, because for now finding

‘#EAOP#’ requires the same number of characters inside rest of signature and code.

I hope it will be possible in the next versions to erase this difference, to extend ‘Routine Signature’

interest and to simplify ‘Element Signature’ code.

For everything else, signature is working exactly in the same way.

SAD 8061 – 8065 / SAD806x

 114

Like for calibration elements (Scalars, Functions, Tables and Structures) selected type provides

globally same options than related element properties, but some properties are shared between all

element types:

and

No address parameter here, ‘#EAOP#’ which should be present in signature, will permit to calculate

element address automatically.

‘Label’, ‘Short Label’, ‘Comments’ and ‘Output Comments’ will be directly duplicated on detected

element and they will do the same job after this on the element, like if they were set up directly in

definition, for Scalar, Function, Table and Structure. ‘Label’ and ‘Short Label’ take default values

based on selected element type.

‘For 8061 or 8065’ combo box is dedicated to structure detection, like ‘For Bank’ number. It permits

to obtain closer signature based on rom hardware and bank number. Otherwise, it is really difficult to

work simply with this type of signatures.

With ‘8061 only’ option, singature will be searched only in 8061 roms, thus from EEC IV

management. With ‘8065 only’ option, singature will be searched only in 8065 roms, yes from EEC V

management.

If ‘For Bank’ stays empty, signature will be searched on all banks in rom, otherwise it will be searched

on specified bank only, one bank only here. Valid banks are the one in the rom, at maximum, you can

have banks 8, 1, 9 and 0.

SAD 8061 – 8065 / SAD806x

 115

Now let’s see dedicated type properties:

- Scalar

Nothing different here compared to the setup on ‘Scalars’ for remaining properties, ‘Byte’, ‘Signed’,

‘Bit Flags’, ‘Units’ and ‘Scale’ properties will be directly duplicated to detected element on

disassembly and will also be applied at the same time, exactly like if you had created this element in

definition.

- Function

Nothing different here compared to the setup on ‘Functions’ for remaining properties, ‘Rows

Number’, ‘Byte’, ‘Signed Input’, ‘Signed Output’, ‘Input Scale’, ‘Output Scale’, ‘Input Units’ and

‘Output Units’ properties will be directly duplicated to detected element on disassembly and will also

be applied at the same time, exactly like if you had created this element in definition. If ‘Rows

Number’ stays at 0, autodetection will apply for it.

- Table

Nothing different here compared to the setup on ‘Tables’ for remaining properties, ‘Columns

Number’, ‘Rows Number’, ‘Word’, ‘Signed’, ‘Scale’, ‘Columns Units’, ‘Rows Units’ and ‘Cells Units’

properties will be directly duplicated to detected element on disassembly and will also be applied at

the same time, exactly like if you had created this element in definition. If ‘Columns Number’ or

‘Rows Number’ stays at 0, autodetection will apply for it.

- Structure

SAD 8061 – 8065 / SAD806x

 116

Nothing different here compared to the setup on ‘Structures’ for remaining properties, ‘Number’,

and ‘Structure’ properties will be directly duplicated to detected element on disassembly and will

also be applied at the same time, exactly like if you had created this element in definition. You can

notice our ‘Yellow Smiley’ image, present for some help on structure writing. If ‘Number’ stays at 0,

autodetection will apply for it.

Do not forget to use the apply button after updates and before quitting this form.

SAD 8061 – 8065 / SAD806x

 117

‘Element Information’ for ‘Elements Signatures’:

‘Elements Signatures’ possess an additional ‘Element Information’ tab too, which includes additional

details grabbed during disassembly and interessant to be known.

In this case, it permits to see, if signature was detected one time or more and if it was one time,

which element was generated by it in definition.

SAD 8061 – 8065 / SAD806x

 118

Writing an element signature, using ‘#EAOP#’:

I will not described how to write a signature from the beginning, so please refer to ‘Routines

Signatures’ part for that.

As described previously, an element signature has no signature parameters keywords, except

‘#EAOP#’ for the operation related with use of element to detect. ‘#EAOP#’ is mandatory, for this

type of signature, but ‘*’ keyword is not possible due to some limitation for now (probably mines or

on my time).

Still the basis, dedicated to element signature:

MAF Transfer function (FN036) signature is the perfect (and the first) example.

This is one of the possible codes which are using it.

This signature will match:

SAD 8061 – 8065 / SAD806x

 119

You can see that ‘#EAOP#’, is replacing operation at ’45,18,03,f0,46’ and it could be any operation,

but just before the signature which is following.

It is not necessary to start signature with ‘#EAOP#’, it could be in the middle of the signature or at its

end, but it should always replace complete operation, related with a calibration element.

Signature should be as generic as possible, but in some cases, it has to be duplicated.

This one is for MAF Transfer function (FN036) too, but it will not work on provided code and it is

required to create some duplicated signature, because of small differences and because of number

of operations between both. This is still related with ‘*’ keyword which is missing.

SAD 8061 – 8065 / SAD806x

 120

‘Elements Signatures’ category menu:

No specificity at all.

SAD 8061 – 8065 / SAD806x

 121

‘Element Signature’ element menu:

No specificity at all.

SAD 8061 – 8065 / SAD806x

 122

Disassembly Text Output:

 As it was already said, SAD 806x text output is largely inspired from SAD disassembler

(created by Andy, tvrfan), so I let you read its documentation to discover what was in place. I will not

try to explain, what should be a good text output for a disassembly, but I will show you things, which

are a bit different from what is existing or which can be a bit complicated to understand.

Disassembly operations basis:

I will try to quickly describe, what the main items are in the disassembled code.

This is an operation:

 1 2 3 4

1. ‘8 df87’ is the complete address of the operation, ‘8’ is the bank where the operation is

stored in the rom, ‘df87’ is the address in the bank, knowing these addresses have 0x2000

added, which becomes their minimum address.

2. ‘71,7f,64’ is the hexadecimal code for the operation. First byte ‘71’ is the instruction, ‘7f,64’

are the parameters.

3. ‘an2b R64, 7f’ is the assembler code for the operation. ‘an2b’ is the instruction, ‘R64, 7f’ are

the parameters.

4. ‘R64 &= 7f;’ is the C like code for the operation. ‘&=’ is the instruction, ‘R64’ and ‘7f’ are the

parameters. Known parameters are only translated in this place.

‘R64’ is a register, with address 0x64.

‘[112]’ would be a register too, with address 0x112, but because it is on more than 2 characters, it is

written without ‘R’.

‘[R64]’ would be a pointer to the value which is in register ‘R64’.

Here we have 2 operations.

 Comparison operations (cmp) are used only to fill in stack with result. Next operations can

use this result, like here. This is why last operation, C like code, contains more information, than the

current operation hexadecimal code, because it includes comparison operation detail.

‘[Rfe+8]’ is an address in rom, but ‘Rfe’ is a RBase register, so address is in this case is on bank 1. So

‘[Rfe+8]’ is the Rfe RBase address with 0x8 added (‘1 8972’ finally), but real value does not appear in

our case, because a scalar ‘[Sc1640]’ has been created at this address, so C like code shows the

translated value, including this scalar.

Here we have 2 calls to routines.

SAD 8061 – 8065 / SAD806x

 123

When C like code contains parenthesis like this, it is a call to a routine. The first line is for an

unknown routine, translated based on the auto numbering, the second one is for a known routine.

Principle stays the same.

 In this case, it is still a call but using arguments. Arguments are on the second line, but will

appear in C like code on the first line, to be clearer. Line at address ‘8 7c48’ is not an operation, it is

only arguments for previous operation or you can consider it is part or previous operation.

Disassembly elements basis:

Scalar examples:

 1 2 3 4 5 6 7

1. The complete address for the element.

2. The hexadecimal value for the element. Do not forget this is an Intel Rom, word values are

inverted.

3. The RBase equivalence, if it exists.

4. The ‘Short Label’ for the scalar. If ‘Label’ has been specified, it will output over the element.

5. The type of the element.

6. The combined hexadecimal value.

7. The decimal value, using the defined scale, if it exists.

Scalars detected or defined as bit flags:

Functions examples:

SAD 8061 – 8065 / SAD806x

 124

 1 2 3 4 5 6 7

‘Short Label‘ and ‘Label’ are found as header of the function.

1. The complete address for the function row.

2. The hexadecimal value for the row, including input and output columns. Do not forget this is

an Intel Rom, word values are inverted.

3. The type of the element.

4. The combined hexadecimal value for the input column.

5. The combined hexadecimal value for the output column.

6. The decimal value, scaled if set up, for the input column.

7. The decimal value, scaled if set up, for the output column.

Tables examples:

A byte one:

 1 2 3 4 5

A word one:

 1 2 3 4 5

‘Short Label‘ and ‘Label’ are found as header of the table.

SAD 8061 – 8065 / SAD806x

 125

1. The complete address for the table row.

2. The hexadecimal value for the row, including all columns. Do not forget this is an Intel Rom,

word values are inverted.

3. The type of the element.

4. The combined hexadecimal value for the all cells in the table.

5. The decimal value, scaled if set up, for the all cells in the table.

Structures examples:

 1 2 3 4

‘Short Label‘ and ‘Label’ are found as header of the structure, properly defined here.

1. The complete address for the structure row/occurrence.

2. The hexadecimal value for the row/occurrence. Based on structure definition, all

rows/occurrences, have not always the same size.

3. The type of the element (‘struct’ is inside calibration part, ‘ostruct’ melted between

operations)

4. The output defined by structure definition itself, so it can be very variable from one structure

to another or from one row/occurrence to another.

Disassembly unknown parts:

Some parts are not disassembled, because it was not possible for SAD 806x to reach the code at this

moment, when it is an operation part or because calibration element was not detected, based on its

use in an operation.

SAD 8061 – 8065 / SAD806x

 126

In operations part, it will be marked as ‘Unknown Operation/Structure’, because it could be a

structure too. You will find the address, the hexadecimal code (8 bytes by 8 bytes) and the mark.

In this case it could be interesting to create a routine at address ‘0 6991’ in definition. A part starting

with ‘f2’ (‘push(PWD);’) and ending with ‘f0’ (‘return;’) should probably be a routine in EEC V rom.

SAD 806x has not processed it, because until now, no ‘call’ or ‘goto’ was done to this address. This

address is probably present in an undetected vector list or in an unknown structure.

Here you can some reserved addresses at ‘9 ff9a’ and ‘9 ff9c’, but just after that, you can see 2 types

of ‘Unknown Operation/Structure’. The last line that we have already seen and the line which begins

with ‘9 ff9e -> fffe’. When unknown bytes are repeated 8 times or more, they are grouped like this

and marked as ‘fill’. So from address ‘9 ff9e’ to address ‘9 fffe’, bytes are filled with ‘ff’ and it is

unrecognized/undefined bytes.

In calibration part (part related with RBase addresses), which contains all tables, functions and

classical scalars, an unknown part is marked as ‘Unknown Calibration’. You will find the address, the

hexadecimal code (8 bytes by 8 bytes), the mark and the values, hexadecimal and decimal, (8 bytes

by 8 bytes). Yes in this case, it is easy to understand, that it is a function (they always start with ff, 7f

or ffff or ff7f), but same thing SAD 806x has not found the code using this address, so nothing was

disassembled.

SAD 8061 – 8065 / SAD806x

 127

SAD vs SAD 806x differences:

SAD version for a routine:

SAD 806x version for the same routine:

SAD 8061 – 8065 / SAD806x

 128

As you can see, it is like the same thing, yes routine number is not the same on one side compared to

the other, some addresses are not recognized, but it is not the difference.

With SAD 806x layout is for now fixed, for operations or calibration elements, no way to add

additional spaces between parts. Other important thing, conditional ‘gotos’ keep their original

meaning with SAD 806x and no ‘{’ or ‘}’ is used to group the code.

SAD basic version for scalars:

SAD 806x one:

SAD 806x layout is fixed and the one for SAD has to be defined, so the result is different.

I will not continue to detail differences, because the others are really related with the layout setup

which is possible in SAD, not in SAD 806x.

SAD 8061 – 8065 / SAD806x

 129

Examples of advanced text outputs:

The header and the famous register list (which remains optional).

SAD 8061 – 8065 / SAD806x

 130

Some scalars.

Some functions and tables.

A classical routine.

SAD 8061 – 8065 / SAD806x

 131

Registers are not automatically set with ‘b’ or ‘w’, this is what I have in my own definition, because

EEC V strategies often share registers, and meaning at byte level is not the same than the one at

word level.

A binary end to finish.

SAD 8061 – 8065 / SAD806x

 132

SAD 8061 – 8065 / SAD806x

 133

SAD 806x menu:

As described at the beginning of the document, all options are not available all the time. I will

not come back on these details, I will try to describe which actions are executed by each option,

because now, you probably better understand SAD 806x and how it is built.

File menu:

- ‘Select Binary …’ option permits to show the open file dialog, to select the appropriate

rom to be disassembled. By default, SAD 806x will show ‘.bin’ files, but you can use any

file you want, at your own risks.

Selected rom will never be updated by SAD 806x, it will use it as a read only file.

When file is selected it is directly loaded and its related SAD 806x definition file (‘.s6x’)

too. A status appears to give the result.

- ‘Select SAD 806x …’ option permits to show the open file dialog, to select another SAD

806x definition file (‘.s6x’), which will replace the default one. By default, SAD 806x will

show ‘.s6x’ files, but you can use any file you want, at your own risks. Name of the file

appears below the option, to be sure.

- ‘Save SAD 806x’ option permits to save the current definition, into the SAD 806x

definition file (‘.s6x’). If the file is not existing, it creates it with its default name (same as

the rom one). Do not forget to save your file before closing application or before

switching to another rom.

- ‘Exit’ option will close the application.

SAD 8061 – 8065 / SAD806x

 134

Disassembly menu:

 Nothing more to say on this menu, it has only one option and is available only for properly

loaded binaries.

- ‘Disassemble’ option will start disassembly process. Everything is done in memory, no

output is done at this level. A status appears to give the result, when disassembly has

finished. This process can take some time.

SAD 8061 – 8065 / SAD806x

 135

Output menu:

Nothing more to say on this menu too, it has only one option and is available only after disassembly.

If you update the SAD 806x definition, you need to disassemble you binary with the new definition,

to be able to generate output another time.

- ‘Text Output’ option will create or overwrite a text file, with the disassembled code.

Everything is done, by the disassembled elements which are in memory. By default

outputted file will be in the same folder, with the same name than the binary. This

process can take some time.

- File name text box is found below ‘Text Output’ option. It permit to see what the name of

the destination file is. When output is done, by double clicking on this text box, computer

default text editor will open the file.

- ‘Select File …’ option permits to show the open file dialog, to select another destination

file (‘.txt’), which will replace the default one. By default, SAD 806x will show ‘.txt’ files,

but you can use any file you want, at your own risks. Name of the file appears before the

option, to be sure.

SAD 8061 – 8065 / SAD806x

 136

Tools search menus:

Search options permit to search elements in definition or signatures in binaries.

- ‘Search Objects’ is available at any time and from anywhere through ‘Ctrl+F’ shortcut. It

permits to search in definition for anything, through a basic text search. This form will be

displayed.

All text fields present on elements will be parsed, including addresses, based on provided

search word which shoould be contained somewhere. The result will appear in list and by

selecting an item, it will be opened in main application.

Please notice, that when right clicking on the button, on the right, you can exectute

special searches.

‘Routines with Arguments’ will provide all routines which use input arguments and

‘Routines Advanced’, all routines set as advanced ones.

- ‘Search Signature’ is available when binary is properly loaded. It permits to search a

signature directly in binary (its hexadecimal text version), exactly like it is done on

disassembly for ‘Routines Signatures’ and ‘Elements Signatures’. Its second, but main in

fact, purpose is to validate a signature when writing one in signatures parts. This form

will be displayed.

SAD 8061 – 8065 / SAD806x

 137

Text box on the top is for the signature. Button in the middle is for searching and yellow

smiley, to help on writing signature (this is the ‘Elements Signatures’ help here) and the

list on the bottom, for the result.

Here you can see that the signature has matched at address 0x24ae on bank 8.

Multiple matches will appear, if this is the case.

SAD 8061 – 8065 / SAD806x

 138

Tools Import/Export menus:

First Import/Export format is SAD 806x definition itself. For now I only see one thing

interesting to be imported massively from one SAD 806x definition to another, I am talking about

signatures, which are really shared between strategies. For other things, Copy and Paste work well

because it is working element by element and for everything else, the repository is perfect.

‘Import Signatures’ option permits to show the open file dialog, to select another SAD 806x

definition file (‘.s6x’). By default, SAD 806x will show ‘.s6x’ files, but you can use any file you want, at

your own risks. Then it will add or update all signatures from selected definition file to the current

one.

For ‘Routines Signatures’, matching will be done on the ‘Short Label’.

For ‘Elements Signatures’, matching will be done on the ‘Short Label’ of the defined element.

Another Import/Export format is for SAD itself. It will manage definitions (.dir files) and

comments (.cmt files). The goal is to import as many things as possible, when definition or comments

were written for SAD.

‘Import SAD Dir file’ option permits to show the open file dialog, to select a SAD definition

file (‘.dir’). By default, SAD 806x will show ‘.dir’ files, but you can use any file you want, at your own

risks. Then it will add or update elements based on the address declared in SAD definition.

If nothing exists at the related address and if element is properly declared in SAD definition, SAD

806x will have no issue to create it at the right place, otherwise it will try to identify it based on

address and finally, if it has no correspondence, all interesting details will be put in an ‘Other

Address’. If something is already declared at the address, it will be overwritten, if it has the same

type, otherwise it will be ignored.

Only calibration elements (scalars, functions, tables, and structures), operations, routines and

registers are imported. Vectors are not managed.

SAD 8061 – 8065 / SAD806x

 139

It is a huge text processing, so prefer to backup you SAD 806x definition before doing it, to permit to

go back if required. The process works better, if binary is disassembled before.

‘Import SAD Cmt file’ option permits to show the open file dialog, to select a SAD comments

file (‘.cmt’). By default, SAD 806x will show ‘.cmt’ files, but you can use any file you want, at your own

risks. Then it will add or update elements based on the address declared in SAD comments.

If nothing exists at the related address, SAD 806x has no way to know what is the type of the

element, so it will be put in an ‘Other Address’. If something is already declared at the address,

comments will be overwritten.

It is a huge text processing too, so prefer to backup you SAD 806x definition before doing it, to

permit to go back if required. The process works better, if binary is disassembled before and SAD

definition file has been imported before comments.

‘Export SAD Dir File Part’ option permits to show the save file dialog, to select a SAD

definition file (‘.dir’). By default, SAD 806x will show ‘.dir’ files, but you can use any file you want, at

your own risks. Then it will create or overwrite file with compatible elements coming from SAD 806x.

This is not a synchronization process, SAD 806x will try to generate all compatible elements in a SAD

definition file which is initialized by default with classical SAD definition header. It has to be reviewed

properly before being used by SAD.

Only calibration elements (scalars, functions, tables, and basic structures), operations and routines

are exported.

Just backup you SAD definition before doing it, otherwise elements not managed by SAD 806x will be

lost.

The most important Import/Export format is TunerPro definition itself. Where SAD 806x

permits to quickly and properly prepare a definition, TunerPro can use one to update a binary file. So

it is essential to be able to synchronize SAD 806x and TunerPro definition, at least for Ford EEC

managements.

- ‘Import/Sync Xdf file’ option permits to show the open file dialog, to select a TunerPro

definition file (‘.xdf’). By default, SAD 806x will show ‘.xdf’ files, but you can use any file

you want, at your own risks. Please check that TunerPro definition is not locked/crypted

before using it.

Then it will add or update all compatible elements (definition properties, scalars, bit

flags, functions and tables). When SAD 806x definition has always been synchronized,

XDF UniqueIds are stored in SAD 806x definition and it will try to match on it. When

SAD 8061 – 8065 / SAD806x

 140

UniqueId does not exist or is not found, it tries to match on ‘Short Label’. But as you

probably know, TunerPro does not use a ‘Short Label’, so SAD 806x tries to decompose

TunerPro label into <‘Label’ – ‘Short Label’ *> or TunerPro description into <’Short Label’

– ‘Label’ *> and then matching is done on found ‘Short Label’ if one. As you will see the

TunerPro description <’Short Label’ – ‘Label’ *> will be the best compatibility basis, with

SAD 806x comments <’Short Label’ – ‘Label’ *>. Matching elements will be overwritten in

SAD 806x definition, so it can be a good idea to backup it before processing.

Process can take some time. Some elements will not match because of their type, so a

message will give their list. Duplicated addresses are now managed in SAD 806x, so they

will be processed on import.

- ‘Export/Sync Xdf file’ option permits to show the save file dialog, to select a TunerPro

definition file (‘.xdf’). By default, SAD 806x will show ‘.xdf’ files, but you can use any file

you want, at your own risks. Please check that TunerPro definition is not locked/crypted

before using it. A backup is done before processing for TunerPro definition, but it can be

a good idea to do it for SAD 806x definition, you will understand why.

Then it will firstly match elements (by XDF UniqueId or by ‘Short Label’) inside SAD806x

definition and finally, it will add or update all compatible elements in TunerPro definition

(definition properties, scalars, bit flags, functions and tables), but all non-compatible

elements (categories, patches, …) will stay intact in definition. Matching elements will be

overwritten in TunerPro definition, new elements will be created and their XDF

UniqueIds will be set in related SAD 806x elements, so you can understand, that it could

be a good idea to backup SAD 806x before processing.

Process can take some time. Duplicated addresses are now managed in SAD 806x, so

they will be processed on export.

- ‘Reset UniqueId for new export’ option permits to empty this XDF UniqueId on all

elements in SAD 806x definition. It is interesting to do it, when it has already been

synchronized and when exporting to a new TunerPro definition. Then new XDF UniqueId

will restart from the beginning, taking the address order, so TunerPro definition, will be

sorted by address. Same thing when importing from a different TunerPro definition, it

permits to prevent mismatching, but I do not think it has to be done from different

TunerPro definitions, it is not a good idea.

From my experience, I can say, that my referential for a definition is now a SAD 806x one. TunerPro is

at the end of the loop, when it is required to update the binary and when definition is advanced

enough to do it. All my work is done directly in SAD 806x for definition part and I create a new

TunerPro definition when needed. Patches and other things are duplicated from previous TunerPro

definition version if necessary.

SAD 8061 – 8065 / SAD806x

 141

Tools Comparisons menus:

Comparisons menu contains all required tools to compare binaries between them and definitions

between them. It can be done through different ways, which I will try to explain.

- ‘Binaries Comparison (Same definition)’ option permits to compare 2 binaries (including

the current disassembled one) and to see which elements have been modified between

them. This comparison has to be used when both binaries are using the same definition,

in fact the same strategy, even if strategy version is different. Differences are only

detected for known elements at their known addresses. Current definition has not to be

really advanced to do it. If you want more it has to be done with a hexadecimal editor or

with the text output inside a text editor.

It opens this form:

The ‘Select Binary to compare’ button will show the open file dialog, to select a binary

file. By default, SAD 806x will show ‘.bin’ files, but you can use any file you want, at your

own risks. Then it will directly compare current binary, with the selected one and it will

output known elements detected in difference, in its result list. With mouse over an

element, you will have some information, when selecting it, you will open it in main

SAD 8061 – 8065 / SAD806x

 142

application. Differences are not detailed, for now it is required to open binary in another

SAD 806x session.

- ‘Binaries Comparison (Different definition)’ option permits to compare 2 binaries

(including the current disassembled one) and to see which elements have been modified

between them. This comparison has to be used when both binaries are not using the

same definition, not the same strategy, but when they are somehow identical, like for

example the same engine on 2 different strategies or a Ford EEC update which has

changed the strategy code. Differences are only detected for known elements, based on

their ‘Short Label’, so which should exist in both definitions. Both definitions have to be a

bit advanced to do it.

It opens this form:

The ‘Select Binary to compare’ button will show the open file dialog, to select a binary

file. By default, SAD 806x will show ‘.bin’ files, but you can use any file you want, at your

own risks. Definition related with selected binary should be in the same folder and

should have the same name, with ‘.s6x’ extension. Then, it will load selected binary,

disassemble it (it takes some time), based on its linked definition and it will compare

current binary, with the selected one and it will output known elements, with same

‘Short Label’ detected in difference, in its result list. With mouse over an element, you

will have some information, when selecting it, you will open it in main application.

Differences are not detailed, for now it is required to open binary in another SAD 806x

session.

- ‘SAD 806x Comparison (Same Binary)’ option permits to compare 2 SAD 806x definitions

(including the current opened one) and to see which user defined elements have a

different definition or are not defined. It is useful to see what has changed between 2

versions. On my side I use it to see what has changed between 2 TunerPro definitions, it

requires to create a new SAD 806x definition, import the new TunerPro definition and

then to compare. This comparison has to use a common basis, which is the binary or a

compatible one with same strategy. Differences are only detected for defined elements

in one definition or in the other, based on their addresses. At least one definition has to

be a bit advanced to do it.

SAD 8061 – 8065 / SAD806x

 143

It opens this form:

The ‘Select SAD 806x to compare’ button will show the open file dialog, to select a SAD

806x definition file. By default, SAD 806x will show ‘.s6x’ files, but you can use any file

you want, at your own risks. It will compare current definition, with the selected one and

it will output each element in difference, in its result list. First part ‘Missing In Compared’

is for elements which are existing in current definition, but not in selected one, the last

one ‘Missing in Source’ is the opposite and ‘Differences’ part shows differences when

elements exist on both sides and are a bit different (based on a defined set of properties

for each type of element). Managed elements are ‘Scalars’, ‘Functions’, ’Tables’ and

‘Structures’. With mouse over an element, you will have some information, when

selecting it, you will open it in main application, if it exists in current definition.

Differences are not detailed, for now it is required to open definition in another SAD

806x session. In this case current definition was empty, compared to a well advanced

one.

- ‘Routines Comparison’ menu permits to access some interesting options. For now

comparisons tools have permitted to compare relatively closed things, which is for sure

necessary, but it does not help to advance on a proper disassembly which is globally

unknown at its start.

‘Routines Comparison’ will permit to compare code from routines between current

binary (and its definition) and another one (and its definition too), but without real link

between them, it is for example possible to compare EEC IV binaries and EEC V binaries.

As you probably know it, the more near in time the binaries are, the more near will be

their routines.

If you are able to match one routine from one binary, where you have identified used

elements and/or register, with another routine from another binary, you will be able to

match used elements and registers too. This is the goal here.

To compare routine quickly and properly, the best way, another time was to use

hexadecimal code. But no signature to write here, it is somehow automatic. The

complete code inside the routine is not used, it is a skeleton, which is used. This skeleton

is composed with instructions only, sometimes modified to get better results, so it is

SAD 8061 – 8065 / SAD806x

 144

some kind of signature, with only instructions. You can see an example, because you can

export one through ‘Export Skeleton’ into a text file.

Then skeletons from one binary are compared to the other, routine by routine. The

method used is to calculate the proximity between routines skeletons, through the

Damerau-Levenshtein distance algorithm. Below a number of operations, some routines

are ignored, over a certain distance routines are managed as different and when

everything is inside values routines are managed as matching.

- ‘Export Skeleton’ option permits to show the save file dialog, to select a skeleton file

(‘.skt’). By default, SAD 806x will show ‘.skt’ files, but you can use any file you want, it is a

text file. Skeleton will be generated from current disassembled binary, but will only store

routines, their details, their code, but not their elements.

This skeleton file can be reused at any time with the next option.

- ‘Compare Skeleton’ option permits to compare routines skeleton, based on current

disassembled binary and another one, which was saved previously from another

disassembled binary, through ‘Export Skeleton’ option.

It opens this form, which is the ‘Compare Routines’ form:

‘Select Skeleton’ button will show the open file dialog, to select a previously saved

skeleton file (‘.skt’). By default, SAD 806x will show ‘.skt’ files.

‘Skeleton file’ text box will show you name of the selected file.

‘Minimum Operations Count’ number, defaulted, is the minimum number of operations

in a routine to permit to compare it. Below this number, routine will be ignore.

‘Count Gap Maximum Tolerance %’ percent, defaulted, is the maximum gap, for

SAD 8061 – 8065 / SAD806x

 145

operations number in routines, presented as percent, between 2 routines to be

compared. Over this percent, routines will not be compared to each other. At 10%, a

routine with 90 operations will be compared to another with 100 operations, but same

routine will not be compared to a routine with 110 operations.

‘Distance Minimum Tolerance %’ percent, defaulted, is the Damerau-Levenshtein

distance, presented as percent, between 2 compared routines. Let say that 100% is for

fully identical routines and 0% for nothing similar between both routines. Below given

value, routines are considered as different and over they are considered as matching.

‘Compare’ button, will start the process, it will generate routines skeletons for current

disassembled binary and then it will compare it to provided skeleton file, based on given

parameters.

’Result’ appears in results list part. With ‘Compare Skeleton’ option, it is only possible to

give routines as result and then to analyze them one by one in disassembly. The more

you have matching routines, the nearer are you binaries or strategies. If you put your

mouse over a routine or a matching routine, you will see additional details, like ‘%

Chances’ which is the opposite of the Damerau-Levenshtein distance, presented as

percent (100% is the best proximity). By clicking on a routine, it will be shown (if

declared) in main application. Result could give routines which are not visible in one

definition or another, because it is not exactly the main routines which are used for

comparison, so in this case routine will appear with its address only, without a ‘Short

Label’. When you see a multiple matching, often for small routines, it is a bit more

complicated to choose one.

SAD 8061 – 8065 / SAD806x

 146

‘Matching Element’ menu is available by right clicking on a routine or its matching

equivalent.

Only one option is available, ‘Import Element’, which permits to copy values from the

matching equivalent to the one on the current definition. For ‘Routines’, only ‘Short

Label’ and ‘Label’ are copied, for security reasons. If menu was shown from current

definition routine, but with multiple matchings, it will do nothing, it works only when it is

a single matching.

‘Elements Category’ menu is available by right clicking on a category, here we have only

‘Routines’ one which is available.

‘Expand All’ and ‘Collapse All’ options are easy to understand at this level.

‘Filter on defined Elements’ is a checkbox, which will reduce number of elements in list,

on fact that they are user defined (something was updated on them by someone, and

saved in definition, it is not automatically generated). It permits to remove from list non

interesting elements.

‘Filter on Short Label Difference’ is a checkbox, which will reduce number of elements in

list, on fact that the ‘Short Label’ has to be different between current definition routine

and its matching equivalent. It permits to remove from list, already copied elements.

‘Filter on unique matching’ is a checkbox, which will reduce number of elements in list,

on fact that they have only one matching equivalent. It permits to remove from list, non-

sure elements.

‘Import secured elements only’ option will do the same thing than ‘Import Element’ at

element level, but here on the whole category, ‘Routines’ in this case. It will apply on all

elements compatible with selected filters, but ‘secured’ means, that in all cases, it applies

on defined elements and unique matching only, with or without these filters checked.

‘Export report’ button will show the save file dialog, to select an output file for the text

report, which will contains the same thing than the shown result. It permits to easily

switch between text report, disassembled text outputs and SAD 806x when updating

definition and it permits to keep a trace too.

‘Compare Skeleton’ is a good starting, point, but is not automatic enough, compared with

the next option.

- ‘Compare Binaries’ option is a kind of all in one process, which cumulates disassembly,

skeleton export and skeleton comparison, but with the whole range of analyzed

elements, because everything from both disassembled binaries is in memory, in the same

SAD 8061 – 8065 / SAD806x

 147

session. Except that, use is really near ‘Compare Skeleton’.

‘Select Binary’ button will show the open file dialog, to select a binary file. By default,

SAD 806x will show ‘.bin’ files.

‘Binary/S6x file(s)’ text box will show you name of the selected binary file and if it has an

available SAD 806x definition (.s6x) file, with the same name in the same folder.

‘Minimum Operations Count’, ‘Count GAP Maximum Tolerance %’ and ‘Distance

Minimum Tolerance %’ are exactly working in the same way than with ‘Compare

Skeleton’.

‘Compare’ button, will start the process, but in this case, the first step is to disassemble

selected binary, which will take some time, then it will generate routines skeletons for

both disassembled binaries and then it will compare them, based on given parameters.

At this moment, in memory we have matching routines between one binary and the

other, like it was the case with ‘Compare Skeleton’, but the process will now continue.

For surely matched routines (unique matching only), it will try to find matching elements

(scalars, functions, tables, structures) and matching registers, at the same place or with

the same tolerance and everything will be proposed as result.

SAD 8061 – 8065 / SAD806x

 148

’Result’ appears in results list part too. With ‘Compare Binaries’ option, result can now

contain routines, scalars, functions, tables, structures and registers. The more you have

matching routines, the nearer are you binaries or strategies.

For ‘Routines’, if you put your mouse over a routine or a matching routine, you will see

additional details, like ‘% Chances’ which is the opposite of the Damerau-Levenshtein

distance, presented as percent (100% is the best proximity). By clicking on a routine, it

will be shown (if declared) in main application. Result could give routines which are not

visible in one definition or another, because it is not exactly the main routines which are

used for comparison, so in this case routine will appear with its address only, without a

‘Short Label’. When you see a multiple matching, often for small routines, it is a bit more

complicated to choose one.

SAD 8061 – 8065 / SAD806x

 149

For other elements and registers, if you put your mouse over an element or a matching

element, you will see additional details, like ‘Occurrences’ which tells you how many

times, this matching was detected in all routines. By clicking on an element, it will be

shown in main application.

‘Matching Element’ menu is available by right clicking on a element or its matching

equivalent.

Only one option is available, ‘Import Element’, which permits to copy values from the

matching equivalent to the one on the current definition. For ‘Routines’, only ‘Short

Label’ and ‘Label’ are copied, for security reasons, for other elements and registers, all

properties are copied. If menu was shown from current definition element, but with

multiple matchings, it will do nothing, it works only when it is a single matching. A

message could appear, when something is not clear, like a different type or a different

number of rows or columns, to validate or cancel copy.

‘Elements Category’ menu is available by right clicking on a category.

SAD 8061 – 8065 / SAD806x

 150

‘Expand All’ and ‘Collapse All’ options are easy to understand at this level.

‘Filter on defined Elements’ is a checkbox, which will reduce number of elements in list,

on fact that they are user defined (something was update on them by someone, and

saved in definition, it is not automatically generated). It permits to remove from list non

interesting elements.

‘Filter on Short Label Difference’ is a checkbox, which will reduce number of elements in

list, on fact that the ‘Short Label’ has to be different between current definition routine

and its matching equivalent. It permits to remove from list, already copied elements.

‘Filter on unique matching’ is a checkbox, which will reduce number of elements in list,

on fact that they have only one matching equivalent. It permits to remove from list, non-

sure elements.

‘Import secured elements only’ option will do the same thing than ‘Import Element’ at

element level, but here on the whole category. It will apply on all elements compatible

with selected filters, but ‘secured’ means, that in all cases, it applies on defined elements

and unique matching only, with or without these filters checked. In addition when

something is not clear, like a different type or a different number of rows or columns or a

register with different byte/word meaning, it is managed as unsecured and ignored too.

‘Export report’ button will show the save file dialog, to select an output file for the text

report, which will contains the same thing than the shown result. It permits to easily

switch between text report, disassembled text outputs and SAD 806x when updating

definition and it permits to keep a trace too.

‘Compare Binaries’ is a great add on, to quickly identify elements between binaries and

import their definitions, but do not try to go too fast.

- ‘Calibration Chart View’ ’ option permits to compare 2 binaries (including the current

disassembled one) visually on a 2D chart. It permits also to see only current binary and to

visually identify its elements, which is possible for some advanced people. It will open its

related form:

SAD 8061 – 8065 / SAD806x

 151

As you can see here, it is a basic 2D chart reflecting the hexadecimal values. It is locked to

the real calibration addresses, related with RBases, as it should be. For sure you can

zoom and unzoom, by using the mouse wheel.

Interesting thing here, is that elements present in disassembled binary are printed as

legend. With mouse over a known element, you will see other details and by clicking on

it, it will be shown in main application.

By right clicking on the chart, you can access to some options.

I will not detail them, because it is related with everything possible here and your own

SAD 8061 – 8065 / SAD806x

 152

habits, but you can change style (some styles are a bit slow), main color and back color.

Now by using the menu, you have access to main things:

For sur you can close this form, with ‘Close’ option, but the interesting one is

‘Disassemble Comparison Binary’. It will show the open file dialog, to select a binary file.

By default, SAD 806x will show ‘.bin’ files. Then it will load it with its default SAD 806x

definition (.s6x, with the same name in the same folder), disassemble it in memory

(which can take a bit time) and finally it will show the result.

Now you can compare both binaries and for sure you change style and colors too.

SAD 8061 – 8065 / SAD806x

 153

Tools Hex Editor menu:

Hex Editor is more a hexadecimal viewer than anything else, because like other things with SAD 806x,

nothing is done to modify the opened binary and you, like me, probably know excellent hexadecimal

editors, which permit to really edit binaries. So it opens this form:

It is useful for some reasons, it permits to see hexadecimal code, for bad binaries and to understand

what is wrong (often on the first 16 bytes), but it is also the only editor able to give a bank address.

‘Offset’ is the address inside the binary, ‘Bank Offset’ is the address inside the bank, beginning with

the bank number itself.

Another interesting thing is the ability to copy hexadecimal code (for signatures or other things), by

right clicking on selected part or using ‘Ctrl-C’ shortcut.

SAD 8061 – 8065 / SAD806x

 154

Just a required tool.

SAD 8061 – 8065 / SAD806x

 155

Help Repository menus:

The ‘Repository’ menu permits to create or update the available repositories. Everywhere when

creating definitions for elements, you can get information coming from the repository, based on

where you are at this moment, through the ‘Ctrl-R’ shortcut, to enrich you definition. Repository is

composed with xml files, in the SAD 806x folder. If they are not present, you can create them from

here, globally all repositories are working in the same way, with small differences. By clicking on the

related option, the right form will open.

- ‘Registers’ repository:

‘Repository search’, to find an item, just use a word and press enter.

‘Repository list’, to show the list of items in repository.

This repository is for now empty, to add a new item, use ‘Ctrl-N’ shortcut or simply right

click on ‘Repository list’, to display this menu:

SAD 8061 – 8065 / SAD806x

 156

As result, you will have a new item created and defaulted, here a register and you are

now able to update its properties.

Registers in repository have only a ‘Label’, ‘Comments’ and ‘Information’. As you have

understood, when used from main application, this repository item will publish its ‘Label’

and ‘Comments’ on the register worked in application. ‘Information’ is only details inside

repository. Name which appears in list is a syntetic version of interesting details on these

properties.

To save the new or updated item, simply use the ‘Save’ button.

As you have seen in small menu, you can remove an item with ‘Remove’ option.

When a proper SAD 806x definition is loaded, a new option is available in this menu.

‘Load from S6x’ option permits to directly enrich repository, based on current SAD 806x

definition. Do no forget to save after this.

SAD 8061 – 8065 / SAD806x

 157

‘Elements’ repositories (for tables, functions, scalars and structures):

Exactly the same principle here, but with a ‘Short Label’ in addition, which will be used

for filling ‘Short Label’ field on elements.

Same options are available, including, ‘Load from S6x’.

SAD 8061 – 8065 / SAD806x

 158

- ‘Units’ repository:

‘Load from S6x’ is still available, ‘Label’ will be used for filling ‘Units’ fields on elements,

‘Comments’ is for repository only.

- ‘Conversion’ repository:

This one is a bit different, no ‘Load from S6x’ is available, for quality reasons.

It possesses a ‘Title’ as information and an ‘Internal Formula’ which will be used for filling

SAD 8061 – 8065 / SAD806x

 159

‘Scale’ fields on elements or to directly add an additional conversion level on diplayed

data.

SAD 8061 – 8065 / SAD806x

 160

SAD 806x command line options:

Most important part of the work, which you will do with SAD 806x, will essentially be on

definitions setup, but sometimes it can be useful to do mass disassembly for, for example, finding a

strategy name, by having only the EEC catch code or its part number. A mass disassembly is also

interesting for me to detect issues on some binaries, when testing a new version of this tool.

So yes, SAD 806x can do some things from command line, even if it stays really limited.

These are the syntaxes to be used:

It opens application with the related binary and its default SAD 806x definition, if it exists in the same

folder, here it should be ‘C:\SAD806x\BIN\KBAN7H4.s6x’.

Same thing than previously, but it starts directly the disassembly, application can be used after this.

Same thing than previously, but it starts directly the disassembly and it does the text output, with the

default text output path, in this case ‘C:\SAD806x\BIN\KBAN7H4.txt’. Application can be used after

this.

This one is the most interesting, because it works at folder level. All binary files (only .bin files)

present in this folder (not in sub directories), will be disassembled (with their default definition if it

exists) and text output will be generated in the same folder (with its default name).

The process can take some time, based on the number of binaries to be processed.

At the end of the process, this message will appear:

A log file will be available in this folder ‘SAD 8061-8065.20XXYYZZ.AABBCC.txt’, including details on

what was really done.

SAD 8061 – 8065 / SAD806x

 161

SAD 8061 – 8065 / SAD806x

 162

Tips:

Disassembly/Output errors management:

 I will give you a good example, based on CRD0 catch code, with strategy RZASA.

For information, RZASA is one of the most complete and clean definition for EECV and is available

thanks to Decipha (http://www.efidynotuning.com/).

I have started from scratch, without a definition, I have disassembled binary, seen following errors,

done the text output without error, to analyze them:

Errors were only at disassembly level, but the output is needed to analyze them, so I open it in

parallel and for sure I keep SAD 806x opened.

I search for the first address.

Ok, I can see a word scalar and issue is on its second byte.

http://www.efidynotuning.com/

SAD 8061 – 8065 / SAD806x

 163

Ok, another byte scalar is defined at this place.

Same thing in the output, second byte is managed as an included element (‘Inc’).

Sc0459 is firstly used as byte, then as word, so yes it is a word scalar and Sc0460 is really used as

byte.

As conclusion, Sc0460 can be ignored, but if you skip it, it will do nothing, because SAD 806x will still

detect it. The best way to deal with it, is to set Sc0459 as byte scalar, thinking second use is an error

in code or a trick to simplify code.

Decipha gives details on Sc0459 and set it as SLPRMPOPN (TCC Ramp Open Exit Slip RPM) which is

defined as byte.

Like this issue is corrected.

This is the simplest example, it was not a real error, but yes, sometimes, calibration elements are

used in a strange way, both word and byte. Sometimes functions are defined properly, but

somewhere, a code part just want to read one of the output values, so it creates this type of

message. SAD 806x can not understand that, so it has to be warned and analysed and corrected if

necessary.

SAD 8061 – 8065 / SAD806x

 164

When errors are on operations, it is more interesting.

Same binary, started from scratch with no definition, a disassembly was done, a SAD directives file

was imported, another disassembly and now these errors:

Yes, it is something, much more impressive and as you can see message shows only the first conflicts.

No way in this case to obtain an output without errors:

Let’s start with first operations in conflict and from text output.

SAD 8061 – 8065 / SAD806x

 165

I see nothing strange here, but I have not operation 8 2438 (or 2439, 243b, …). I can see 2 operations

with a goto to 8 2435, so this one should be good and another one with a goto to 8 2439.

In definition, nothing (no operation, no routine) is defined at address 8 2435, but at 8 2438, yes,

coming from directives import.

I skip it to test, no need to save SAD 806x definition, then another disassembly and another output.

SAD 8061 – 8065 / SAD806x

 166

Ok, now it is fine for this part, routine set at 8 2438 was wrong, it can be removed.

164 errors remain to be corrected, but it should be the same thing.

You can now understand how to correct this type of issues, when they really are issues. I will not

described all conflicts, which are normal and properly working, like operations with ‘fe’, used with or

without it, you will have to analyze them yourself, SAD 806x gives just an information.

In a real conflict, one of the operation is wrongly defined, the first address given in message or the

second one. Sometimes it is easy to find and to correct, sometimes wrong operation comes from an

initial goto or call, which is not easy to find. The worst case, is related with a routine call, when

arguments were not properly identified or counted, because arguments are now identified as

operations and managed like this and because this call is done in many places.

By the way, you will always be able to correct these issues, by modifying SAD 806x definition.

SAD 8061 – 8065 / SAD806x

 167

Banks Order and SAD 806x:

 I write this chapter to describe, how SAD 806x works with banks and their order, following a

ridiculous issue I had with an EEC, just because I had forgotten some details.

SAD 806x is not dependent from banks order in rom. Let’s take the strategy which gives me some

troubles, ATAFH. I was working since some time, on a binary coming from Ford IDS.

Before updating it, I have compared it with the one on the car, with SAD 806x and I have seen no

difference at all, so I have updated it and I have sent it on the car and nothing was working. I have

updated it with PATS, VID block coming from car, I have sent it another and another time, with the

same result.

SAD 8061 – 8065 / SAD806x

 168

Because of the title of this chapter, you know what was the issue.

With the same definition, except here and in the header of the text output, it is impossible to know,

that binaries are different. Yes, banks order is not the same and in SAD 806x, your definition works

perfectly on both binaries, each element compared in 2 different SAD 806x sessions is identical.

This is really practical, to have a definition, which is banks order free, but you should not forget this

information.

TunerPro is not banks order free and if you export this definition for TunerPro, in one case it will not

work, nothing will be exported, because of the Xdf base offset, which is defaulted by SAD 806x.

For the first binary you have by default:

For the second one:

If you want to use the same definition, with binaries having a different banks order, it works perfectly

inside SAD 806x, but for using TunerPro, you will have to play with the Xdf base offset. Same thing, if

you want to change the banks order in your binary, this is the only information to update in

definition, to be totally compatible with TunerPro.

And for sure, before updating an EEC, be sure to use the right banks order.

SAD 8061 – 8065 / SAD806x

 169

Glossary:

EEC : Ford Electronic Engine Control is the Ford engine control unit.

EEC-IV uses 60pin connector, 8061 processor and 1 bank, EEC-V uses 104pin

(sometimes 60pin) connector, 8065 processor and 4 banks (not always activated).

Both possesses a J3 connector in addition. Additional information will not be

described here.

J3 connector : Ford J3 connector is a service connector for EEC-IV and EEC-V.

It will not be described here.

Rom/Binary : Each EEC contains a specific Rom/Binary, stored in a Flash memory.

It contains both instructions and calibration values.

Strategy : Each Binary is based on a Strategy, which is in fact position of

instructions and calibration values in the binary. It is not the EEC Catch Code.

Strategy version : For the same strategy, where version is different, just calibration

values are modified.

EEC Catch Code : The main information visible on the EEC.

One Strategy version gives one Catch Code.

EEC Hardware Code : The hardware code for the EEC. One hardware code permits to use

different strategies, but one strategy requires a specific hardware code.

Bank : Memory bank, in binary. 56ko maximum.

Instructions : Instructions provided to processor to process parameters.

Operations : Set of instructions and parameters.

Routines : Set of operations, virtually created to be able to better understand

disassembled code.

Registers : A register is an EEC memory address, not related with rom, used to

share data or information inside program. Globally on EECV addresses start at 0x0000

to go to 0x1FFF and another part can be used from 0xF000 to 0xFFFF.

Calibration Values : Calibration values can be split in 4 categories:

Structures : a variable set of bytes, words based on conditions.

Tables : a table of bytes or words with fixed size. 3 input values,

columns number, column scaled value and row scaled value. 1 output value.

Functions : a table with 2 columns. 1 input value. 1 output value.

Scalars : a byte or a word value.

RBases : Most important part of EEC-IV and EEC-V use RBase shortcuts for

defining the calibration element addresses. RBases are in fact dedicated

registers, containing a base address inside the calibration rom part. By adding

a value to it, it gives an element address, still in the calibration rom part. The

SAD 8061 – 8065 / SAD806x

 170

first calibration element at the address pointed by a RBase is the end address

of its own part. RBases are mainly 8 word registers, which follow themselves.

RConst : Late EEC-IV and EEC-V use, what I call, RConst. It is working like

RBases, but essentially for register addresses. They are still dedicated

registers, containing a base value and by adding another value to them, it

gives a register address.

Disassembly : It is the human understandable version of the instructions and their

parameters, separated from the data, which are the calibration values.

Checksum : Rom contains a value, stored at a defined address, which permits to

control validity of the whole rom, to prevent copy errors. When updating

something in rom (except in certain parts), it is required to modify the

checksum, to be sure related routine, will not generate an error code.

SAD 8061 – 8065 / SAD806x

 171

Files:

Rom/Binary files : 1 bank (8) for EEC-IV, 2 banks (8 and 1) minimum for EEC-V.

(.bin, .hex …).

S6x files : SAD806x definition file (.s6x). Basically an xml file. Use one

by strategy.

SAD 806x repository files : SAD806x repository files. Basically an xml file.

‘registers.xml’, ‘structures.xml’, ‘tables.xml’, ‘functions.xml’, ‘scalars.xml’, ‘units.xml’

or ‘conversion.xml’.

SAD files : SAD disassembler directives files (.dir) and comment files (.cmt).

TunerPro files : TunerPro definition file (.xdf).

	Description:
	Installation:
	First start:
	Binary loaded:
	Binary disassembled:
	Disassembled Binary Outputted:
	SAD 806x definition:
	Properties:
	Reserved:
	Scalars:
	Functions:
	Tables:
	Structures:
	Routines:
	Operations:
	Registers:
	Other addresses:
	Routines Signatures:
	Elements Signatures:

	Disassembly Text Output:
	SAD 806x menu:
	File menu:
	Disassembly menu:
	Output menu:
	Tools search menus:
	Tools Import/Export menus:
	Tools Comparisons menus:
	Tools Hex Editor menu:
	Help Repository menus:

	SAD 806x command line options:
	Tips:
	Disassembly/Output errors management:
	Banks Order and SAD 806x:

	Glossary:

